Loading…
Development of Powder-in-Tube Processed Iron Pnictide Wires and Tapes
The development of PIT fabrication process of iron pnictide superconducting wires and tapes has been reviewed. Silver was found to be the best sheath material, since no reaction layer was observed between the silver sheath and the superconducting core. The grain connectivity of iron pnictide wires a...
Saved in:
Published in: | IEEE transactions on applied superconductivity 2011-06, Vol.21 (3), p.2878-2881 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The development of PIT fabrication process of iron pnictide superconducting wires and tapes has been reviewed. Silver was found to be the best sheath material, since no reaction layer was observed between the silver sheath and the superconducting core. The grain connectivity of iron pnictide wires and tapes has been markedly improved by employing Ag or Pb as dopants. At present, critical current densities in excess of 3750 A/cm 2 (I c =37.5A) at 4.2 K have been achieved in Ag-sheathed SrKFeAs wires prepared with the above techniques, which is the highest value obtained in iron-based wires and tapes so far. Moreover, Ag-sheathed Sm-1111 superconducting tapes were successfully prepared by PIT method at temperatures as low as ~900°C, instead of commonly used temperatures of ~1200°C. These results demonstrate the feasibility of producing superconducting pnictide composite wires, even grain boundary properties require much more attention. |
---|---|
ISSN: | 1051-8223 1558-2515 |
DOI: | 10.1109/TASC.2010.2079311 |