Loading…
Binary jumps in continuum. I. Equilibrium processes and their scaling limits
Let Γ denote the space of all locally finite subsets (configurations) in \documentclass[12pt]{minimal}\begin{document}$\mathbb {R}^d$\end{document} R d . A stochastic dynamics of binary jumps in continuum is a Markov process on Γ in which pairs of particles simultaneously hop over \documentclass[12p...
Saved in:
Published in: | Journal of mathematical physics 2011-06, Vol.52 (6), p.063304-063304-25 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c446t-f3f83abd3d2a4112b729a1a81641ae995cd2ca2873f5e781c9394dc16834d9203 |
---|---|
cites | cdi_FETCH-LOGICAL-c446t-f3f83abd3d2a4112b729a1a81641ae995cd2ca2873f5e781c9394dc16834d9203 |
container_end_page | 063304-25 |
container_issue | 6 |
container_start_page | 063304 |
container_title | Journal of mathematical physics |
container_volume | 52 |
creator | Finkelshtein, Dmitri L. Kondratiev, Yuri G. Kutoviy, Oleksandr V. Lytvynov, Eugene |
description | Let Γ denote the space of all locally finite subsets (configurations) in
\documentclass[12pt]{minimal}\begin{document}$\mathbb {R}^d$\end{document}
R
d
. A stochastic dynamics of binary jumps in continuum is a Markov process on Γ in which pairs of particles simultaneously hop over
\documentclass[12pt]{minimal}\begin{document}$\mathbb {R}^d$\end{document}
R
d
. In this paper, we study an equilibrium dynamics of binary jumps for which a Poisson measure is a symmetrizing (and hence invariant) measure. The existence and uniqueness of the corresponding stochastic dynamics are shown. We next prove the main result of this paper: a big class of dynamics of binary jumps converge, in a diffusive scaling limit, to a dynamics of interacting Brownian particles. We also study another scaling limit, which leads us to a spatial birth-and-death process in continuum. A remarkable property of the limiting dynamics is that its generator possesses a spectral gap, a property which is hopeless to expect from the initial dynamics of binary jumps. |
doi_str_mv | 10.1063/1.3601118 |
format | article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_24342926</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2397479521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-f3f83abd3d2a4112b729a1a81641ae995cd2ca2873f5e781c9394dc16834d9203</originalsourceid><addsrcrecordid>eNqNkE1LwzAAhoMoOKcH_0EQPCh05mtpchF0zA8YeNFzyNJUM9q0S1rBf29qh54UT7k8eZL3AeAUoxlGnF7hGeUIYyz2wAQjIbOcz8U-mCBESEaYEIfgKMYNSoxgbAJWt87r8AE3fd1G6Dw0je-c7_t6Bh9ncLntXeXWwfU1bENjbIw2Qu0L2L1ZF2A0unL-FVaudl08BgelrqI92Z1T8HK3fF48ZKun-8fFzSozjPEuK2kpqF4XtCCaYUzWOZEaa4E5w9pKOTcFMZqInJZzmwtsJJWsMJgLygpJEJ2Cs9GbvrTtbezUpumDT08qkfO0GnGeoIsRMqGJMdhStcHVaavCSA2tFFa7Vok93wn1sKgM2hsXvy8QRhmRZHBej1w0rtOda_zv0jGs-gqrnFdD2CS4_LfgL_i9CT-gaouSfgJAc5kO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>876089066</pqid></control><display><type>article</type><title>Binary jumps in continuum. I. Equilibrium processes and their scaling limits</title><source>American Institute of Physics (AIP) Publications</source><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Finkelshtein, Dmitri L. ; Kondratiev, Yuri G. ; Kutoviy, Oleksandr V. ; Lytvynov, Eugene</creator><creatorcontrib>Finkelshtein, Dmitri L. ; Kondratiev, Yuri G. ; Kutoviy, Oleksandr V. ; Lytvynov, Eugene</creatorcontrib><description>Let Γ denote the space of all locally finite subsets (configurations) in
\documentclass[12pt]{minimal}\begin{document}$\mathbb {R}^d$\end{document}
R
d
. A stochastic dynamics of binary jumps in continuum is a Markov process on Γ in which pairs of particles simultaneously hop over
\documentclass[12pt]{minimal}\begin{document}$\mathbb {R}^d$\end{document}
R
d
. In this paper, we study an equilibrium dynamics of binary jumps for which a Poisson measure is a symmetrizing (and hence invariant) measure. The existence and uniqueness of the corresponding stochastic dynamics are shown. We next prove the main result of this paper: a big class of dynamics of binary jumps converge, in a diffusive scaling limit, to a dynamics of interacting Brownian particles. We also study another scaling limit, which leads us to a spatial birth-and-death process in continuum. A remarkable property of the limiting dynamics is that its generator possesses a spectral gap, a property which is hopeless to expect from the initial dynamics of binary jumps.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.3601118</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>Brownian motion ; Exact sciences and technology ; Markov analysis ; Mathematical methods in physics ; Mathematics ; Physics ; Poisson distribution ; Sciences and techniques of general use ; Stochastic models</subject><ispartof>Journal of mathematical physics, 2011-06, Vol.52 (6), p.063304-063304-25</ispartof><rights>American Institute of Physics</rights><rights>2011 American Institute of Physics</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Institute of Physics Jun 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-f3f83abd3d2a4112b729a1a81641ae995cd2ca2873f5e781c9394dc16834d9203</citedby><cites>FETCH-LOGICAL-c446t-f3f83abd3d2a4112b729a1a81641ae995cd2ca2873f5e781c9394dc16834d9203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.3601118$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27922,27923,76153</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24342926$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Finkelshtein, Dmitri L.</creatorcontrib><creatorcontrib>Kondratiev, Yuri G.</creatorcontrib><creatorcontrib>Kutoviy, Oleksandr V.</creatorcontrib><creatorcontrib>Lytvynov, Eugene</creatorcontrib><title>Binary jumps in continuum. I. Equilibrium processes and their scaling limits</title><title>Journal of mathematical physics</title><description>Let Γ denote the space of all locally finite subsets (configurations) in
\documentclass[12pt]{minimal}\begin{document}$\mathbb {R}^d$\end{document}
R
d
. A stochastic dynamics of binary jumps in continuum is a Markov process on Γ in which pairs of particles simultaneously hop over
\documentclass[12pt]{minimal}\begin{document}$\mathbb {R}^d$\end{document}
R
d
. In this paper, we study an equilibrium dynamics of binary jumps for which a Poisson measure is a symmetrizing (and hence invariant) measure. The existence and uniqueness of the corresponding stochastic dynamics are shown. We next prove the main result of this paper: a big class of dynamics of binary jumps converge, in a diffusive scaling limit, to a dynamics of interacting Brownian particles. We also study another scaling limit, which leads us to a spatial birth-and-death process in continuum. A remarkable property of the limiting dynamics is that its generator possesses a spectral gap, a property which is hopeless to expect from the initial dynamics of binary jumps.</description><subject>Brownian motion</subject><subject>Exact sciences and technology</subject><subject>Markov analysis</subject><subject>Mathematical methods in physics</subject><subject>Mathematics</subject><subject>Physics</subject><subject>Poisson distribution</subject><subject>Sciences and techniques of general use</subject><subject>Stochastic models</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LwzAAhoMoOKcH_0EQPCh05mtpchF0zA8YeNFzyNJUM9q0S1rBf29qh54UT7k8eZL3AeAUoxlGnF7hGeUIYyz2wAQjIbOcz8U-mCBESEaYEIfgKMYNSoxgbAJWt87r8AE3fd1G6Dw0je-c7_t6Bh9ncLntXeXWwfU1bENjbIw2Qu0L2L1ZF2A0unL-FVaudl08BgelrqI92Z1T8HK3fF48ZKun-8fFzSozjPEuK2kpqF4XtCCaYUzWOZEaa4E5w9pKOTcFMZqInJZzmwtsJJWsMJgLygpJEJ2Cs9GbvrTtbezUpumDT08qkfO0GnGeoIsRMqGJMdhStcHVaavCSA2tFFa7Vok93wn1sKgM2hsXvy8QRhmRZHBej1w0rtOda_zv0jGs-gqrnFdD2CS4_LfgL_i9CT-gaouSfgJAc5kO</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Finkelshtein, Dmitri L.</creator><creator>Kondratiev, Yuri G.</creator><creator>Kutoviy, Oleksandr V.</creator><creator>Lytvynov, Eugene</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope></search><sort><creationdate>20110601</creationdate><title>Binary jumps in continuum. I. Equilibrium processes and their scaling limits</title><author>Finkelshtein, Dmitri L. ; Kondratiev, Yuri G. ; Kutoviy, Oleksandr V. ; Lytvynov, Eugene</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-f3f83abd3d2a4112b729a1a81641ae995cd2ca2873f5e781c9394dc16834d9203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Brownian motion</topic><topic>Exact sciences and technology</topic><topic>Markov analysis</topic><topic>Mathematical methods in physics</topic><topic>Mathematics</topic><topic>Physics</topic><topic>Poisson distribution</topic><topic>Sciences and techniques of general use</topic><topic>Stochastic models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Finkelshtein, Dmitri L.</creatorcontrib><creatorcontrib>Kondratiev, Yuri G.</creatorcontrib><creatorcontrib>Kutoviy, Oleksandr V.</creatorcontrib><creatorcontrib>Lytvynov, Eugene</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Finkelshtein, Dmitri L.</au><au>Kondratiev, Yuri G.</au><au>Kutoviy, Oleksandr V.</au><au>Lytvynov, Eugene</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Binary jumps in continuum. I. Equilibrium processes and their scaling limits</atitle><jtitle>Journal of mathematical physics</jtitle><date>2011-06-01</date><risdate>2011</risdate><volume>52</volume><issue>6</issue><spage>063304</spage><epage>063304-25</epage><pages>063304-063304-25</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>Let Γ denote the space of all locally finite subsets (configurations) in
\documentclass[12pt]{minimal}\begin{document}$\mathbb {R}^d$\end{document}
R
d
. A stochastic dynamics of binary jumps in continuum is a Markov process on Γ in which pairs of particles simultaneously hop over
\documentclass[12pt]{minimal}\begin{document}$\mathbb {R}^d$\end{document}
R
d
. In this paper, we study an equilibrium dynamics of binary jumps for which a Poisson measure is a symmetrizing (and hence invariant) measure. The existence and uniqueness of the corresponding stochastic dynamics are shown. We next prove the main result of this paper: a big class of dynamics of binary jumps converge, in a diffusive scaling limit, to a dynamics of interacting Brownian particles. We also study another scaling limit, which leads us to a spatial birth-and-death process in continuum. A remarkable property of the limiting dynamics is that its generator possesses a spectral gap, a property which is hopeless to expect from the initial dynamics of binary jumps.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.3601118</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | Journal of mathematical physics, 2011-06, Vol.52 (6), p.063304-063304-25 |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_pascalfrancis_primary_24342926 |
source | American Institute of Physics (AIP) Publications; American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Brownian motion Exact sciences and technology Markov analysis Mathematical methods in physics Mathematics Physics Poisson distribution Sciences and techniques of general use Stochastic models |
title | Binary jumps in continuum. I. Equilibrium processes and their scaling limits |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T16%3A11%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Binary%20jumps%20in%20continuum.%20I.%20Equilibrium%20processes%20and%20their%20scaling%20limits&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Finkelshtein,%20Dmitri%20L.&rft.date=2011-06-01&rft.volume=52&rft.issue=6&rft.spage=063304&rft.epage=063304-25&rft.pages=063304-063304-25&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.3601118&rft_dat=%3Cproquest_pasca%3E2397479521%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c446t-f3f83abd3d2a4112b729a1a81641ae995cd2ca2873f5e781c9394dc16834d9203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=876089066&rft_id=info:pmid/&rfr_iscdi=true |