Loading…

Binary jumps in continuum. I. Equilibrium processes and their scaling limits

Let Γ denote the space of all locally finite subsets (configurations) in \documentclass[12pt]{minimal}\begin{document}$\mathbb {R}^d$\end{document} R d . A stochastic dynamics of binary jumps in continuum is a Markov process on Γ in which pairs of particles simultaneously hop over \documentclass[12p...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical physics 2011-06, Vol.52 (6), p.063304-063304-25
Main Authors: Finkelshtein, Dmitri L., Kondratiev, Yuri G., Kutoviy, Oleksandr V., Lytvynov, Eugene
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c446t-f3f83abd3d2a4112b729a1a81641ae995cd2ca2873f5e781c9394dc16834d9203
cites cdi_FETCH-LOGICAL-c446t-f3f83abd3d2a4112b729a1a81641ae995cd2ca2873f5e781c9394dc16834d9203
container_end_page 063304-25
container_issue 6
container_start_page 063304
container_title Journal of mathematical physics
container_volume 52
creator Finkelshtein, Dmitri L.
Kondratiev, Yuri G.
Kutoviy, Oleksandr V.
Lytvynov, Eugene
description Let Γ denote the space of all locally finite subsets (configurations) in \documentclass[12pt]{minimal}\begin{document}$\mathbb {R}^d$\end{document} R d . A stochastic dynamics of binary jumps in continuum is a Markov process on Γ in which pairs of particles simultaneously hop over \documentclass[12pt]{minimal}\begin{document}$\mathbb {R}^d$\end{document} R d . In this paper, we study an equilibrium dynamics of binary jumps for which a Poisson measure is a symmetrizing (and hence invariant) measure. The existence and uniqueness of the corresponding stochastic dynamics are shown. We next prove the main result of this paper: a big class of dynamics of binary jumps converge, in a diffusive scaling limit, to a dynamics of interacting Brownian particles. We also study another scaling limit, which leads us to a spatial birth-and-death process in continuum. A remarkable property of the limiting dynamics is that its generator possesses a spectral gap, a property which is hopeless to expect from the initial dynamics of binary jumps.
doi_str_mv 10.1063/1.3601118
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_24342926</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2397479521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-f3f83abd3d2a4112b729a1a81641ae995cd2ca2873f5e781c9394dc16834d9203</originalsourceid><addsrcrecordid>eNqNkE1LwzAAhoMoOKcH_0EQPCh05mtpchF0zA8YeNFzyNJUM9q0S1rBf29qh54UT7k8eZL3AeAUoxlGnF7hGeUIYyz2wAQjIbOcz8U-mCBESEaYEIfgKMYNSoxgbAJWt87r8AE3fd1G6Dw0je-c7_t6Bh9ncLntXeXWwfU1bENjbIw2Qu0L2L1ZF2A0unL-FVaudl08BgelrqI92Z1T8HK3fF48ZKun-8fFzSozjPEuK2kpqF4XtCCaYUzWOZEaa4E5w9pKOTcFMZqInJZzmwtsJJWsMJgLygpJEJ2Cs9GbvrTtbezUpumDT08qkfO0GnGeoIsRMqGJMdhStcHVaavCSA2tFFa7Vok93wn1sKgM2hsXvy8QRhmRZHBej1w0rtOda_zv0jGs-gqrnFdD2CS4_LfgL_i9CT-gaouSfgJAc5kO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>876089066</pqid></control><display><type>article</type><title>Binary jumps in continuum. I. Equilibrium processes and their scaling limits</title><source>American Institute of Physics (AIP) Publications</source><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Finkelshtein, Dmitri L. ; Kondratiev, Yuri G. ; Kutoviy, Oleksandr V. ; Lytvynov, Eugene</creator><creatorcontrib>Finkelshtein, Dmitri L. ; Kondratiev, Yuri G. ; Kutoviy, Oleksandr V. ; Lytvynov, Eugene</creatorcontrib><description>Let Γ denote the space of all locally finite subsets (configurations) in \documentclass[12pt]{minimal}\begin{document}$\mathbb {R}^d$\end{document} R d . A stochastic dynamics of binary jumps in continuum is a Markov process on Γ in which pairs of particles simultaneously hop over \documentclass[12pt]{minimal}\begin{document}$\mathbb {R}^d$\end{document} R d . In this paper, we study an equilibrium dynamics of binary jumps for which a Poisson measure is a symmetrizing (and hence invariant) measure. The existence and uniqueness of the corresponding stochastic dynamics are shown. We next prove the main result of this paper: a big class of dynamics of binary jumps converge, in a diffusive scaling limit, to a dynamics of interacting Brownian particles. We also study another scaling limit, which leads us to a spatial birth-and-death process in continuum. A remarkable property of the limiting dynamics is that its generator possesses a spectral gap, a property which is hopeless to expect from the initial dynamics of binary jumps.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.3601118</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>Brownian motion ; Exact sciences and technology ; Markov analysis ; Mathematical methods in physics ; Mathematics ; Physics ; Poisson distribution ; Sciences and techniques of general use ; Stochastic models</subject><ispartof>Journal of mathematical physics, 2011-06, Vol.52 (6), p.063304-063304-25</ispartof><rights>American Institute of Physics</rights><rights>2011 American Institute of Physics</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Institute of Physics Jun 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-f3f83abd3d2a4112b729a1a81641ae995cd2ca2873f5e781c9394dc16834d9203</citedby><cites>FETCH-LOGICAL-c446t-f3f83abd3d2a4112b729a1a81641ae995cd2ca2873f5e781c9394dc16834d9203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.3601118$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27922,27923,76153</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24342926$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Finkelshtein, Dmitri L.</creatorcontrib><creatorcontrib>Kondratiev, Yuri G.</creatorcontrib><creatorcontrib>Kutoviy, Oleksandr V.</creatorcontrib><creatorcontrib>Lytvynov, Eugene</creatorcontrib><title>Binary jumps in continuum. I. Equilibrium processes and their scaling limits</title><title>Journal of mathematical physics</title><description>Let Γ denote the space of all locally finite subsets (configurations) in \documentclass[12pt]{minimal}\begin{document}$\mathbb {R}^d$\end{document} R d . A stochastic dynamics of binary jumps in continuum is a Markov process on Γ in which pairs of particles simultaneously hop over \documentclass[12pt]{minimal}\begin{document}$\mathbb {R}^d$\end{document} R d . In this paper, we study an equilibrium dynamics of binary jumps for which a Poisson measure is a symmetrizing (and hence invariant) measure. The existence and uniqueness of the corresponding stochastic dynamics are shown. We next prove the main result of this paper: a big class of dynamics of binary jumps converge, in a diffusive scaling limit, to a dynamics of interacting Brownian particles. We also study another scaling limit, which leads us to a spatial birth-and-death process in continuum. A remarkable property of the limiting dynamics is that its generator possesses a spectral gap, a property which is hopeless to expect from the initial dynamics of binary jumps.</description><subject>Brownian motion</subject><subject>Exact sciences and technology</subject><subject>Markov analysis</subject><subject>Mathematical methods in physics</subject><subject>Mathematics</subject><subject>Physics</subject><subject>Poisson distribution</subject><subject>Sciences and techniques of general use</subject><subject>Stochastic models</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LwzAAhoMoOKcH_0EQPCh05mtpchF0zA8YeNFzyNJUM9q0S1rBf29qh54UT7k8eZL3AeAUoxlGnF7hGeUIYyz2wAQjIbOcz8U-mCBESEaYEIfgKMYNSoxgbAJWt87r8AE3fd1G6Dw0je-c7_t6Bh9ncLntXeXWwfU1bENjbIw2Qu0L2L1ZF2A0unL-FVaudl08BgelrqI92Z1T8HK3fF48ZKun-8fFzSozjPEuK2kpqF4XtCCaYUzWOZEaa4E5w9pKOTcFMZqInJZzmwtsJJWsMJgLygpJEJ2Cs9GbvrTtbezUpumDT08qkfO0GnGeoIsRMqGJMdhStcHVaavCSA2tFFa7Vok93wn1sKgM2hsXvy8QRhmRZHBej1w0rtOda_zv0jGs-gqrnFdD2CS4_LfgL_i9CT-gaouSfgJAc5kO</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Finkelshtein, Dmitri L.</creator><creator>Kondratiev, Yuri G.</creator><creator>Kutoviy, Oleksandr V.</creator><creator>Lytvynov, Eugene</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope></search><sort><creationdate>20110601</creationdate><title>Binary jumps in continuum. I. Equilibrium processes and their scaling limits</title><author>Finkelshtein, Dmitri L. ; Kondratiev, Yuri G. ; Kutoviy, Oleksandr V. ; Lytvynov, Eugene</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-f3f83abd3d2a4112b729a1a81641ae995cd2ca2873f5e781c9394dc16834d9203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Brownian motion</topic><topic>Exact sciences and technology</topic><topic>Markov analysis</topic><topic>Mathematical methods in physics</topic><topic>Mathematics</topic><topic>Physics</topic><topic>Poisson distribution</topic><topic>Sciences and techniques of general use</topic><topic>Stochastic models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Finkelshtein, Dmitri L.</creatorcontrib><creatorcontrib>Kondratiev, Yuri G.</creatorcontrib><creatorcontrib>Kutoviy, Oleksandr V.</creatorcontrib><creatorcontrib>Lytvynov, Eugene</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Finkelshtein, Dmitri L.</au><au>Kondratiev, Yuri G.</au><au>Kutoviy, Oleksandr V.</au><au>Lytvynov, Eugene</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Binary jumps in continuum. I. Equilibrium processes and their scaling limits</atitle><jtitle>Journal of mathematical physics</jtitle><date>2011-06-01</date><risdate>2011</risdate><volume>52</volume><issue>6</issue><spage>063304</spage><epage>063304-25</epage><pages>063304-063304-25</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>Let Γ denote the space of all locally finite subsets (configurations) in \documentclass[12pt]{minimal}\begin{document}$\mathbb {R}^d$\end{document} R d . A stochastic dynamics of binary jumps in continuum is a Markov process on Γ in which pairs of particles simultaneously hop over \documentclass[12pt]{minimal}\begin{document}$\mathbb {R}^d$\end{document} R d . In this paper, we study an equilibrium dynamics of binary jumps for which a Poisson measure is a symmetrizing (and hence invariant) measure. The existence and uniqueness of the corresponding stochastic dynamics are shown. We next prove the main result of this paper: a big class of dynamics of binary jumps converge, in a diffusive scaling limit, to a dynamics of interacting Brownian particles. We also study another scaling limit, which leads us to a spatial birth-and-death process in continuum. A remarkable property of the limiting dynamics is that its generator possesses a spectral gap, a property which is hopeless to expect from the initial dynamics of binary jumps.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.3601118</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2011-06, Vol.52 (6), p.063304-063304-25
issn 0022-2488
1089-7658
language eng
recordid cdi_pascalfrancis_primary_24342926
source American Institute of Physics (AIP) Publications; American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Brownian motion
Exact sciences and technology
Markov analysis
Mathematical methods in physics
Mathematics
Physics
Poisson distribution
Sciences and techniques of general use
Stochastic models
title Binary jumps in continuum. I. Equilibrium processes and their scaling limits
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T16%3A11%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Binary%20jumps%20in%20continuum.%20I.%20Equilibrium%20processes%20and%20their%20scaling%20limits&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Finkelshtein,%20Dmitri%20L.&rft.date=2011-06-01&rft.volume=52&rft.issue=6&rft.spage=063304&rft.epage=063304-25&rft.pages=063304-063304-25&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.3601118&rft_dat=%3Cproquest_pasca%3E2397479521%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c446t-f3f83abd3d2a4112b729a1a81641ae995cd2ca2873f5e781c9394dc16834d9203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=876089066&rft_id=info:pmid/&rfr_iscdi=true