Loading…
Accurate and Efficient Network Tomography Through Network Coding
Accurate and efficient measurement of network-internal characteristics is critical for the management and maintenance of large-scale networks. In this paper, we propose a linear algebraic network tomography (LANT) framework for the active inference of link loss rates on mesh topologies through netwo...
Saved in:
Published in: | IEEE transactions on vehicular technology 2011-07, Vol.60 (6), p.2701-2713 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c395t-2ed9f058161d67d34c9e7f3a6069808ef0f6fff0c1caa9654400993408ab99af3 |
---|---|
cites | cdi_FETCH-LOGICAL-c395t-2ed9f058161d67d34c9e7f3a6069808ef0f6fff0c1caa9654400993408ab99af3 |
container_end_page | 2713 |
container_issue | 6 |
container_start_page | 2701 |
container_title | IEEE transactions on vehicular technology |
container_volume | 60 |
creator | Jiaqi Gui Shah-Mansouri, V. Wong, V. W. S. |
description | Accurate and efficient measurement of network-internal characteristics is critical for the management and maintenance of large-scale networks. In this paper, we propose a linear algebraic network tomography (LANT) framework for the active inference of link loss rates on mesh topologies through network coding. Probe packets are transmitted from the sources to the destinations along a set of paths. Intermediate nodes linearly combine the received probes and transmit the coded probes using predetermined coding coefficients. Although a smaller probe size can reduce the bandwidth usage of the network, the inference framework is not valid if the probe size falls below a certain threshold. To this end, we determine the minimum probe packet size, which is necessary and sufficient to establish the mapping between the contents of the received probes and the losses on the different sets of paths. Then, we develop algorithms to find the coding coefficients such that the minimum probe size is achieved. We propose a linear algebraic approach to develop consistent estimators of link loss rates, which converge to the actual loss rates as the number of probes increases. Simulation results show that the LANT framework achieves better estimation accuracy than the belief propagation algorithm for a large number of probe packets. |
doi_str_mv | 10.1109/TVT.2011.2149549 |
format | article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_24392298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5762400</ieee_id><sourcerecordid>1671378546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-2ed9f058161d67d34c9e7f3a6069808ef0f6fff0c1caa9654400993408ab99af3</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoWKt3wcsiCF62ZjbZ7M7NUuoHFL2sXkPMJu3WdlOTXaT_3pSWHjwNM-8zXy8h10BHABQfqs9qlFGAUQYcc44nZADIMEWW4ykZUAplGuv5ObkIYRlTzhEG5HGsde9VZxLV1snU2kY3pu2SN9P9Ov-dVG7t5l5tFtukWnjXzxdHaeLqpp1fkjOrVsFcHeKQfDxNq8lLOnt_fp2MZ6lmmHdpZmq0NC9BQC2KmnGNprBMCSqwpKWx1AprLdWglUKRc04pIuO0VF-IyrIhud_P3Xj305vQyXUTtFmtVGtcHySIAlhR5lxE9PYfunS9b-N1sixEBkWGECG6h7R3IXhj5cY3a-W3EqjcOSqjo3LnqDw4GlvuDnNV0GplvWp1E459GWeYZVhG7mbPNcaYo5zH1fEp9gdvln1W</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>876217291</pqid></control><display><type>article</type><title>Accurate and Efficient Network Tomography Through Network Coding</title><source>IEEE Xplore (Online service)</source><creator>Jiaqi Gui ; Shah-Mansouri, V. ; Wong, V. W. S.</creator><creatorcontrib>Jiaqi Gui ; Shah-Mansouri, V. ; Wong, V. W. S.</creatorcontrib><description>Accurate and efficient measurement of network-internal characteristics is critical for the management and maintenance of large-scale networks. In this paper, we propose a linear algebraic network tomography (LANT) framework for the active inference of link loss rates on mesh topologies through network coding. Probe packets are transmitted from the sources to the destinations along a set of paths. Intermediate nodes linearly combine the received probes and transmit the coded probes using predetermined coding coefficients. Although a smaller probe size can reduce the bandwidth usage of the network, the inference framework is not valid if the probe size falls below a certain threshold. To this end, we determine the minimum probe packet size, which is necessary and sufficient to establish the mapping between the contents of the received probes and the losses on the different sets of paths. Then, we develop algorithms to find the coding coefficients such that the minimum probe size is achieved. We propose a linear algebraic approach to develop consistent estimators of link loss rates, which converge to the actual loss rates as the number of probes increases. Simulation results show that the LANT framework achieves better estimation accuracy than the belief propagation algorithm for a large number of probe packets.</description><identifier>ISSN: 0018-9545</identifier><identifier>EISSN: 1939-9359</identifier><identifier>DOI: 10.1109/TVT.2011.2149549</identifier><identifier>CODEN: ITVTAB</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algebra ; Algorithms ; Applied sciences ; Coding ; Encoding ; Estimation ; Estimators ; Exact sciences and technology ; Inference ; Link loss rate estimation ; Links ; Network coding ; network tomography ; Network topology ; Networks ; Probes ; Studies ; Switching and signalling ; Systems, networks and services of telecommunications ; Telecommunications ; Telecommunications and information theory ; Tomography ; Topology</subject><ispartof>IEEE transactions on vehicular technology, 2011-07, Vol.60 (6), p.2701-2713</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-2ed9f058161d67d34c9e7f3a6069808ef0f6fff0c1caa9654400993408ab99af3</citedby><cites>FETCH-LOGICAL-c395t-2ed9f058161d67d34c9e7f3a6069808ef0f6fff0c1caa9654400993408ab99af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5762400$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24392298$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiaqi Gui</creatorcontrib><creatorcontrib>Shah-Mansouri, V.</creatorcontrib><creatorcontrib>Wong, V. W. S.</creatorcontrib><title>Accurate and Efficient Network Tomography Through Network Coding</title><title>IEEE transactions on vehicular technology</title><addtitle>TVT</addtitle><description>Accurate and efficient measurement of network-internal characteristics is critical for the management and maintenance of large-scale networks. In this paper, we propose a linear algebraic network tomography (LANT) framework for the active inference of link loss rates on mesh topologies through network coding. Probe packets are transmitted from the sources to the destinations along a set of paths. Intermediate nodes linearly combine the received probes and transmit the coded probes using predetermined coding coefficients. Although a smaller probe size can reduce the bandwidth usage of the network, the inference framework is not valid if the probe size falls below a certain threshold. To this end, we determine the minimum probe packet size, which is necessary and sufficient to establish the mapping between the contents of the received probes and the losses on the different sets of paths. Then, we develop algorithms to find the coding coefficients such that the minimum probe size is achieved. We propose a linear algebraic approach to develop consistent estimators of link loss rates, which converge to the actual loss rates as the number of probes increases. Simulation results show that the LANT framework achieves better estimation accuracy than the belief propagation algorithm for a large number of probe packets.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Coding</subject><subject>Encoding</subject><subject>Estimation</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>Inference</subject><subject>Link loss rate estimation</subject><subject>Links</subject><subject>Network coding</subject><subject>network tomography</subject><subject>Network topology</subject><subject>Networks</subject><subject>Probes</subject><subject>Studies</subject><subject>Switching and signalling</subject><subject>Systems, networks and services of telecommunications</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Tomography</subject><subject>Topology</subject><issn>0018-9545</issn><issn>1939-9359</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LAzEQhoMoWKt3wcsiCF62ZjbZ7M7NUuoHFL2sXkPMJu3WdlOTXaT_3pSWHjwNM-8zXy8h10BHABQfqs9qlFGAUQYcc44nZADIMEWW4ykZUAplGuv5ObkIYRlTzhEG5HGsde9VZxLV1snU2kY3pu2SN9P9Ov-dVG7t5l5tFtukWnjXzxdHaeLqpp1fkjOrVsFcHeKQfDxNq8lLOnt_fp2MZ6lmmHdpZmq0NC9BQC2KmnGNprBMCSqwpKWx1AprLdWglUKRc04pIuO0VF-IyrIhud_P3Xj305vQyXUTtFmtVGtcHySIAlhR5lxE9PYfunS9b-N1sixEBkWGECG6h7R3IXhj5cY3a-W3EqjcOSqjo3LnqDw4GlvuDnNV0GplvWp1E459GWeYZVhG7mbPNcaYo5zH1fEp9gdvln1W</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Jiaqi Gui</creator><creator>Shah-Mansouri, V.</creator><creator>Wong, V. W. S.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20110701</creationdate><title>Accurate and Efficient Network Tomography Through Network Coding</title><author>Jiaqi Gui ; Shah-Mansouri, V. ; Wong, V. W. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-2ed9f058161d67d34c9e7f3a6069808ef0f6fff0c1caa9654400993408ab99af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Coding</topic><topic>Encoding</topic><topic>Estimation</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>Inference</topic><topic>Link loss rate estimation</topic><topic>Links</topic><topic>Network coding</topic><topic>network tomography</topic><topic>Network topology</topic><topic>Networks</topic><topic>Probes</topic><topic>Studies</topic><topic>Switching and signalling</topic><topic>Systems, networks and services of telecommunications</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Tomography</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiaqi Gui</creatorcontrib><creatorcontrib>Shah-Mansouri, V.</creatorcontrib><creatorcontrib>Wong, V. W. S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on vehicular technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiaqi Gui</au><au>Shah-Mansouri, V.</au><au>Wong, V. W. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate and Efficient Network Tomography Through Network Coding</atitle><jtitle>IEEE transactions on vehicular technology</jtitle><stitle>TVT</stitle><date>2011-07-01</date><risdate>2011</risdate><volume>60</volume><issue>6</issue><spage>2701</spage><epage>2713</epage><pages>2701-2713</pages><issn>0018-9545</issn><eissn>1939-9359</eissn><coden>ITVTAB</coden><abstract>Accurate and efficient measurement of network-internal characteristics is critical for the management and maintenance of large-scale networks. In this paper, we propose a linear algebraic network tomography (LANT) framework for the active inference of link loss rates on mesh topologies through network coding. Probe packets are transmitted from the sources to the destinations along a set of paths. Intermediate nodes linearly combine the received probes and transmit the coded probes using predetermined coding coefficients. Although a smaller probe size can reduce the bandwidth usage of the network, the inference framework is not valid if the probe size falls below a certain threshold. To this end, we determine the minimum probe packet size, which is necessary and sufficient to establish the mapping between the contents of the received probes and the losses on the different sets of paths. Then, we develop algorithms to find the coding coefficients such that the minimum probe size is achieved. We propose a linear algebraic approach to develop consistent estimators of link loss rates, which converge to the actual loss rates as the number of probes increases. Simulation results show that the LANT framework achieves better estimation accuracy than the belief propagation algorithm for a large number of probe packets.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TVT.2011.2149549</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9545 |
ispartof | IEEE transactions on vehicular technology, 2011-07, Vol.60 (6), p.2701-2713 |
issn | 0018-9545 1939-9359 |
language | eng |
recordid | cdi_pascalfrancis_primary_24392298 |
source | IEEE Xplore (Online service) |
subjects | Algebra Algorithms Applied sciences Coding Encoding Estimation Estimators Exact sciences and technology Inference Link loss rate estimation Links Network coding network tomography Network topology Networks Probes Studies Switching and signalling Systems, networks and services of telecommunications Telecommunications Telecommunications and information theory Tomography Topology |
title | Accurate and Efficient Network Tomography Through Network Coding |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A21%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20and%20Efficient%20Network%20Tomography%20Through%20Network%20Coding&rft.jtitle=IEEE%20transactions%20on%20vehicular%20technology&rft.au=Jiaqi%20Gui&rft.date=2011-07-01&rft.volume=60&rft.issue=6&rft.spage=2701&rft.epage=2713&rft.pages=2701-2713&rft.issn=0018-9545&rft.eissn=1939-9359&rft.coden=ITVTAB&rft_id=info:doi/10.1109/TVT.2011.2149549&rft_dat=%3Cproquest_pasca%3E1671378546%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c395t-2ed9f058161d67d34c9e7f3a6069808ef0f6fff0c1caa9654400993408ab99af3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=876217291&rft_id=info:pmid/&rft_ieee_id=5762400&rfr_iscdi=true |