Loading…

Accurate and Efficient Network Tomography Through Network Coding

Accurate and efficient measurement of network-internal characteristics is critical for the management and maintenance of large-scale networks. In this paper, we propose a linear algebraic network tomography (LANT) framework for the active inference of link loss rates on mesh topologies through netwo...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on vehicular technology 2011-07, Vol.60 (6), p.2701-2713
Main Authors: Jiaqi Gui, Shah-Mansouri, V., Wong, V. W. S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c395t-2ed9f058161d67d34c9e7f3a6069808ef0f6fff0c1caa9654400993408ab99af3
cites cdi_FETCH-LOGICAL-c395t-2ed9f058161d67d34c9e7f3a6069808ef0f6fff0c1caa9654400993408ab99af3
container_end_page 2713
container_issue 6
container_start_page 2701
container_title IEEE transactions on vehicular technology
container_volume 60
creator Jiaqi Gui
Shah-Mansouri, V.
Wong, V. W. S.
description Accurate and efficient measurement of network-internal characteristics is critical for the management and maintenance of large-scale networks. In this paper, we propose a linear algebraic network tomography (LANT) framework for the active inference of link loss rates on mesh topologies through network coding. Probe packets are transmitted from the sources to the destinations along a set of paths. Intermediate nodes linearly combine the received probes and transmit the coded probes using predetermined coding coefficients. Although a smaller probe size can reduce the bandwidth usage of the network, the inference framework is not valid if the probe size falls below a certain threshold. To this end, we determine the minimum probe packet size, which is necessary and sufficient to establish the mapping between the contents of the received probes and the losses on the different sets of paths. Then, we develop algorithms to find the coding coefficients such that the minimum probe size is achieved. We propose a linear algebraic approach to develop consistent estimators of link loss rates, which converge to the actual loss rates as the number of probes increases. Simulation results show that the LANT framework achieves better estimation accuracy than the belief propagation algorithm for a large number of probe packets.
doi_str_mv 10.1109/TVT.2011.2149549
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_24392298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5762400</ieee_id><sourcerecordid>1671378546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-2ed9f058161d67d34c9e7f3a6069808ef0f6fff0c1caa9654400993408ab99af3</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoWKt3wcsiCF62ZjbZ7M7NUuoHFL2sXkPMJu3WdlOTXaT_3pSWHjwNM-8zXy8h10BHABQfqs9qlFGAUQYcc44nZADIMEWW4ykZUAplGuv5ObkIYRlTzhEG5HGsde9VZxLV1snU2kY3pu2SN9P9Ov-dVG7t5l5tFtukWnjXzxdHaeLqpp1fkjOrVsFcHeKQfDxNq8lLOnt_fp2MZ6lmmHdpZmq0NC9BQC2KmnGNprBMCSqwpKWx1AprLdWglUKRc04pIuO0VF-IyrIhud_P3Xj305vQyXUTtFmtVGtcHySIAlhR5lxE9PYfunS9b-N1sixEBkWGECG6h7R3IXhj5cY3a-W3EqjcOSqjo3LnqDw4GlvuDnNV0GplvWp1E459GWeYZVhG7mbPNcaYo5zH1fEp9gdvln1W</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>876217291</pqid></control><display><type>article</type><title>Accurate and Efficient Network Tomography Through Network Coding</title><source>IEEE Xplore (Online service)</source><creator>Jiaqi Gui ; Shah-Mansouri, V. ; Wong, V. W. S.</creator><creatorcontrib>Jiaqi Gui ; Shah-Mansouri, V. ; Wong, V. W. S.</creatorcontrib><description>Accurate and efficient measurement of network-internal characteristics is critical for the management and maintenance of large-scale networks. In this paper, we propose a linear algebraic network tomography (LANT) framework for the active inference of link loss rates on mesh topologies through network coding. Probe packets are transmitted from the sources to the destinations along a set of paths. Intermediate nodes linearly combine the received probes and transmit the coded probes using predetermined coding coefficients. Although a smaller probe size can reduce the bandwidth usage of the network, the inference framework is not valid if the probe size falls below a certain threshold. To this end, we determine the minimum probe packet size, which is necessary and sufficient to establish the mapping between the contents of the received probes and the losses on the different sets of paths. Then, we develop algorithms to find the coding coefficients such that the minimum probe size is achieved. We propose a linear algebraic approach to develop consistent estimators of link loss rates, which converge to the actual loss rates as the number of probes increases. Simulation results show that the LANT framework achieves better estimation accuracy than the belief propagation algorithm for a large number of probe packets.</description><identifier>ISSN: 0018-9545</identifier><identifier>EISSN: 1939-9359</identifier><identifier>DOI: 10.1109/TVT.2011.2149549</identifier><identifier>CODEN: ITVTAB</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algebra ; Algorithms ; Applied sciences ; Coding ; Encoding ; Estimation ; Estimators ; Exact sciences and technology ; Inference ; Link loss rate estimation ; Links ; Network coding ; network tomography ; Network topology ; Networks ; Probes ; Studies ; Switching and signalling ; Systems, networks and services of telecommunications ; Telecommunications ; Telecommunications and information theory ; Tomography ; Topology</subject><ispartof>IEEE transactions on vehicular technology, 2011-07, Vol.60 (6), p.2701-2713</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-2ed9f058161d67d34c9e7f3a6069808ef0f6fff0c1caa9654400993408ab99af3</citedby><cites>FETCH-LOGICAL-c395t-2ed9f058161d67d34c9e7f3a6069808ef0f6fff0c1caa9654400993408ab99af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5762400$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24392298$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiaqi Gui</creatorcontrib><creatorcontrib>Shah-Mansouri, V.</creatorcontrib><creatorcontrib>Wong, V. W. S.</creatorcontrib><title>Accurate and Efficient Network Tomography Through Network Coding</title><title>IEEE transactions on vehicular technology</title><addtitle>TVT</addtitle><description>Accurate and efficient measurement of network-internal characteristics is critical for the management and maintenance of large-scale networks. In this paper, we propose a linear algebraic network tomography (LANT) framework for the active inference of link loss rates on mesh topologies through network coding. Probe packets are transmitted from the sources to the destinations along a set of paths. Intermediate nodes linearly combine the received probes and transmit the coded probes using predetermined coding coefficients. Although a smaller probe size can reduce the bandwidth usage of the network, the inference framework is not valid if the probe size falls below a certain threshold. To this end, we determine the minimum probe packet size, which is necessary and sufficient to establish the mapping between the contents of the received probes and the losses on the different sets of paths. Then, we develop algorithms to find the coding coefficients such that the minimum probe size is achieved. We propose a linear algebraic approach to develop consistent estimators of link loss rates, which converge to the actual loss rates as the number of probes increases. Simulation results show that the LANT framework achieves better estimation accuracy than the belief propagation algorithm for a large number of probe packets.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Coding</subject><subject>Encoding</subject><subject>Estimation</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>Inference</subject><subject>Link loss rate estimation</subject><subject>Links</subject><subject>Network coding</subject><subject>network tomography</subject><subject>Network topology</subject><subject>Networks</subject><subject>Probes</subject><subject>Studies</subject><subject>Switching and signalling</subject><subject>Systems, networks and services of telecommunications</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Tomography</subject><subject>Topology</subject><issn>0018-9545</issn><issn>1939-9359</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LAzEQhoMoWKt3wcsiCF62ZjbZ7M7NUuoHFL2sXkPMJu3WdlOTXaT_3pSWHjwNM-8zXy8h10BHABQfqs9qlFGAUQYcc44nZADIMEWW4ykZUAplGuv5ObkIYRlTzhEG5HGsde9VZxLV1snU2kY3pu2SN9P9Ov-dVG7t5l5tFtukWnjXzxdHaeLqpp1fkjOrVsFcHeKQfDxNq8lLOnt_fp2MZ6lmmHdpZmq0NC9BQC2KmnGNprBMCSqwpKWx1AprLdWglUKRc04pIuO0VF-IyrIhud_P3Xj305vQyXUTtFmtVGtcHySIAlhR5lxE9PYfunS9b-N1sixEBkWGECG6h7R3IXhj5cY3a-W3EqjcOSqjo3LnqDw4GlvuDnNV0GplvWp1E459GWeYZVhG7mbPNcaYo5zH1fEp9gdvln1W</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Jiaqi Gui</creator><creator>Shah-Mansouri, V.</creator><creator>Wong, V. W. S.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20110701</creationdate><title>Accurate and Efficient Network Tomography Through Network Coding</title><author>Jiaqi Gui ; Shah-Mansouri, V. ; Wong, V. W. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-2ed9f058161d67d34c9e7f3a6069808ef0f6fff0c1caa9654400993408ab99af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Coding</topic><topic>Encoding</topic><topic>Estimation</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>Inference</topic><topic>Link loss rate estimation</topic><topic>Links</topic><topic>Network coding</topic><topic>network tomography</topic><topic>Network topology</topic><topic>Networks</topic><topic>Probes</topic><topic>Studies</topic><topic>Switching and signalling</topic><topic>Systems, networks and services of telecommunications</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Tomography</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiaqi Gui</creatorcontrib><creatorcontrib>Shah-Mansouri, V.</creatorcontrib><creatorcontrib>Wong, V. W. S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on vehicular technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiaqi Gui</au><au>Shah-Mansouri, V.</au><au>Wong, V. W. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate and Efficient Network Tomography Through Network Coding</atitle><jtitle>IEEE transactions on vehicular technology</jtitle><stitle>TVT</stitle><date>2011-07-01</date><risdate>2011</risdate><volume>60</volume><issue>6</issue><spage>2701</spage><epage>2713</epage><pages>2701-2713</pages><issn>0018-9545</issn><eissn>1939-9359</eissn><coden>ITVTAB</coden><abstract>Accurate and efficient measurement of network-internal characteristics is critical for the management and maintenance of large-scale networks. In this paper, we propose a linear algebraic network tomography (LANT) framework for the active inference of link loss rates on mesh topologies through network coding. Probe packets are transmitted from the sources to the destinations along a set of paths. Intermediate nodes linearly combine the received probes and transmit the coded probes using predetermined coding coefficients. Although a smaller probe size can reduce the bandwidth usage of the network, the inference framework is not valid if the probe size falls below a certain threshold. To this end, we determine the minimum probe packet size, which is necessary and sufficient to establish the mapping between the contents of the received probes and the losses on the different sets of paths. Then, we develop algorithms to find the coding coefficients such that the minimum probe size is achieved. We propose a linear algebraic approach to develop consistent estimators of link loss rates, which converge to the actual loss rates as the number of probes increases. Simulation results show that the LANT framework achieves better estimation accuracy than the belief propagation algorithm for a large number of probe packets.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TVT.2011.2149549</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0018-9545
ispartof IEEE transactions on vehicular technology, 2011-07, Vol.60 (6), p.2701-2713
issn 0018-9545
1939-9359
language eng
recordid cdi_pascalfrancis_primary_24392298
source IEEE Xplore (Online service)
subjects Algebra
Algorithms
Applied sciences
Coding
Encoding
Estimation
Estimators
Exact sciences and technology
Inference
Link loss rate estimation
Links
Network coding
network tomography
Network topology
Networks
Probes
Studies
Switching and signalling
Systems, networks and services of telecommunications
Telecommunications
Telecommunications and information theory
Tomography
Topology
title Accurate and Efficient Network Tomography Through Network Coding
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A21%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20and%20Efficient%20Network%20Tomography%20Through%20Network%20Coding&rft.jtitle=IEEE%20transactions%20on%20vehicular%20technology&rft.au=Jiaqi%20Gui&rft.date=2011-07-01&rft.volume=60&rft.issue=6&rft.spage=2701&rft.epage=2713&rft.pages=2701-2713&rft.issn=0018-9545&rft.eissn=1939-9359&rft.coden=ITVTAB&rft_id=info:doi/10.1109/TVT.2011.2149549&rft_dat=%3Cproquest_pasca%3E1671378546%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c395t-2ed9f058161d67d34c9e7f3a6069808ef0f6fff0c1caa9654400993408ab99af3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=876217291&rft_id=info:pmid/&rft_ieee_id=5762400&rfr_iscdi=true