Loading…
Confidence Bounds for Multiplicative Comparisons
Statements that are inherently multiplicative have historically been justified using ratios of random variables. Although recent work on ratios has extended the classical theory to produce confidence bounds conditioned on a positive denominator, this current article offers a novel perspective that e...
Saved in:
Published in: | Communications in statistics. Theory and methods 2011-09, Vol.40 (17), p.3049-3054 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c436t-4689688a27629b3d49d19187b4191e0c00ea7fadb743e4c76ca7fc95b63c33753 |
---|---|
cites | cdi_FETCH-LOGICAL-c436t-4689688a27629b3d49d19187b4191e0c00ea7fadb743e4c76ca7fc95b63c33753 |
container_end_page | 3054 |
container_issue | 17 |
container_start_page | 3049 |
container_title | Communications in statistics. Theory and methods |
container_volume | 40 |
creator | Ennis, John M. Ennis, Daniel M. |
description | Statements that are inherently multiplicative have historically been justified using ratios of random variables. Although recent work on ratios has extended the classical theory to produce confidence bounds conditioned on a positive denominator, this current article offers a novel perspective that eliminates the need for such a condition. Although seemingly trivial, this new perspective leads to improved lower confidence bounds to support multiplicative statements. This perspective is also more satisfying as it allows comparisons that are inherently multiplicative in nature to be properly analyzed as such. |
doi_str_mv | 10.1080/03610921003646398 |
format | article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_24462195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2724681091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-4689688a27629b3d49d19187b4191e0c00ea7fadb743e4c76ca7fc95b63c33753</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYMoOI7-AHcFEVfVvNOAGy2-YMSNgruSpilkSJsxadX592aY0YWDuLr3ku8cTg4AxwieI1jAC0g4ghIjmBbKiSx2wAQxgnOK2OsumKze8wTwfXAQ4xxCxERBJgCWvm9tY3ptsms_9k3MWh-yx9ENduGsVoN9N1npu4UKNvo-HoK9VrlojjZzCl5ub57L-3z2dPdQXs1yTQkfcsoLyYtCYcGxrElDZYMkKkRN0zBQQ2iUaFVTC0oM1YLrdGrJak40IYKRKThb-y6CfxtNHKrORm2cU73xY6zSV3DBGBOJPPlFzv0Y-hSuQpBAzBiWMlFoTengYwymrRbBdiosE1StKqy2Kkya042zilq5Nqhe2_gjxJRyjOQqq1hztk_lderDB9dUg1o6H75FW-7V8Dkk5eW_SvJ3wC9MzZN8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1030255299</pqid></control><display><type>article</type><title>Confidence Bounds for Multiplicative Comparisons</title><source>Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)</source><creator>Ennis, John M. ; Ennis, Daniel M.</creator><creatorcontrib>Ennis, John M. ; Ennis, Daniel M.</creatorcontrib><description>Statements that are inherently multiplicative have historically been justified using ratios of random variables. Although recent work on ratios has extended the classical theory to produce confidence bounds conditioned on a positive denominator, this current article offers a novel perspective that eliminates the need for such a condition. Although seemingly trivial, this new perspective leads to improved lower confidence bounds to support multiplicative statements. This perspective is also more satisfying as it allows comparisons that are inherently multiplicative in nature to be properly analyzed as such.</description><identifier>ISSN: 0361-0926</identifier><identifier>EISSN: 1532-415X</identifier><identifier>DOI: 10.1080/03610921003646398</identifier><identifier>CODEN: CSTMDC</identifier><language>eng</language><publisher>Philadelphia, PA: Taylor & Francis Group</publisher><subject>Conditioning ; Confidence ; Confidence interval ; Confidence intervals ; Estimation ; Exact sciences and technology ; General topics ; Global analysis, analysis on manifolds ; Mathematics ; Multiplicative comparison ; Multiplicative statement ; Nonparametric inference ; Parametric inference ; Primary 62F25 ; Probability and statistics ; Random variables ; Ratio statement ; Ratios ; Ratios of normal random variable ; Sciences and techniques of general use ; Secondary 62F03 ; Statistics ; Studies ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><ispartof>Communications in statistics. Theory and methods, 2011-09, Vol.40 (17), p.3049-3054</ispartof><rights>Copyright Taylor & Francis Group, LLC 2011</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Taylor & Francis Ltd. 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-4689688a27629b3d49d19187b4191e0c00ea7fadb743e4c76ca7fc95b63c33753</citedby><cites>FETCH-LOGICAL-c436t-4689688a27629b3d49d19187b4191e0c00ea7fadb743e4c76ca7fc95b63c33753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24462195$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ennis, John M.</creatorcontrib><creatorcontrib>Ennis, Daniel M.</creatorcontrib><title>Confidence Bounds for Multiplicative Comparisons</title><title>Communications in statistics. Theory and methods</title><description>Statements that are inherently multiplicative have historically been justified using ratios of random variables. Although recent work on ratios has extended the classical theory to produce confidence bounds conditioned on a positive denominator, this current article offers a novel perspective that eliminates the need for such a condition. Although seemingly trivial, this new perspective leads to improved lower confidence bounds to support multiplicative statements. This perspective is also more satisfying as it allows comparisons that are inherently multiplicative in nature to be properly analyzed as such.</description><subject>Conditioning</subject><subject>Confidence</subject><subject>Confidence interval</subject><subject>Confidence intervals</subject><subject>Estimation</subject><subject>Exact sciences and technology</subject><subject>General topics</subject><subject>Global analysis, analysis on manifolds</subject><subject>Mathematics</subject><subject>Multiplicative comparison</subject><subject>Multiplicative statement</subject><subject>Nonparametric inference</subject><subject>Parametric inference</subject><subject>Primary 62F25</subject><subject>Probability and statistics</subject><subject>Random variables</subject><subject>Ratio statement</subject><subject>Ratios</subject><subject>Ratios of normal random variable</subject><subject>Sciences and techniques of general use</subject><subject>Secondary 62F03</subject><subject>Statistics</subject><subject>Studies</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><issn>0361-0926</issn><issn>1532-415X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAUhYMoOI7-AHcFEVfVvNOAGy2-YMSNgruSpilkSJsxadX592aY0YWDuLr3ku8cTg4AxwieI1jAC0g4ghIjmBbKiSx2wAQxgnOK2OsumKze8wTwfXAQ4xxCxERBJgCWvm9tY3ptsms_9k3MWh-yx9ENduGsVoN9N1npu4UKNvo-HoK9VrlojjZzCl5ub57L-3z2dPdQXs1yTQkfcsoLyYtCYcGxrElDZYMkKkRN0zBQQ2iUaFVTC0oM1YLrdGrJak40IYKRKThb-y6CfxtNHKrORm2cU73xY6zSV3DBGBOJPPlFzv0Y-hSuQpBAzBiWMlFoTengYwymrRbBdiosE1StKqy2Kkya042zilq5Nqhe2_gjxJRyjOQqq1hztk_lderDB9dUg1o6H75FW-7V8Dkk5eW_SvJ3wC9MzZN8</recordid><startdate>20110901</startdate><enddate>20110901</enddate><creator>Ennis, John M.</creator><creator>Ennis, Daniel M.</creator><general>Taylor & Francis Group</general><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110901</creationdate><title>Confidence Bounds for Multiplicative Comparisons</title><author>Ennis, John M. ; Ennis, Daniel M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-4689688a27629b3d49d19187b4191e0c00ea7fadb743e4c76ca7fc95b63c33753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Conditioning</topic><topic>Confidence</topic><topic>Confidence interval</topic><topic>Confidence intervals</topic><topic>Estimation</topic><topic>Exact sciences and technology</topic><topic>General topics</topic><topic>Global analysis, analysis on manifolds</topic><topic>Mathematics</topic><topic>Multiplicative comparison</topic><topic>Multiplicative statement</topic><topic>Nonparametric inference</topic><topic>Parametric inference</topic><topic>Primary 62F25</topic><topic>Probability and statistics</topic><topic>Random variables</topic><topic>Ratio statement</topic><topic>Ratios</topic><topic>Ratios of normal random variable</topic><topic>Sciences and techniques of general use</topic><topic>Secondary 62F03</topic><topic>Statistics</topic><topic>Studies</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ennis, John M.</creatorcontrib><creatorcontrib>Ennis, Daniel M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Communications in statistics. Theory and methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ennis, John M.</au><au>Ennis, Daniel M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Confidence Bounds for Multiplicative Comparisons</atitle><jtitle>Communications in statistics. Theory and methods</jtitle><date>2011-09-01</date><risdate>2011</risdate><volume>40</volume><issue>17</issue><spage>3049</spage><epage>3054</epage><pages>3049-3054</pages><issn>0361-0926</issn><eissn>1532-415X</eissn><coden>CSTMDC</coden><abstract>Statements that are inherently multiplicative have historically been justified using ratios of random variables. Although recent work on ratios has extended the classical theory to produce confidence bounds conditioned on a positive denominator, this current article offers a novel perspective that eliminates the need for such a condition. Although seemingly trivial, this new perspective leads to improved lower confidence bounds to support multiplicative statements. This perspective is also more satisfying as it allows comparisons that are inherently multiplicative in nature to be properly analyzed as such.</abstract><cop>Philadelphia, PA</cop><pub>Taylor & Francis Group</pub><doi>10.1080/03610921003646398</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-0926 |
ispartof | Communications in statistics. Theory and methods, 2011-09, Vol.40 (17), p.3049-3054 |
issn | 0361-0926 1532-415X |
language | eng |
recordid | cdi_pascalfrancis_primary_24462195 |
source | Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list) |
subjects | Conditioning Confidence Confidence interval Confidence intervals Estimation Exact sciences and technology General topics Global analysis, analysis on manifolds Mathematics Multiplicative comparison Multiplicative statement Nonparametric inference Parametric inference Primary 62F25 Probability and statistics Random variables Ratio statement Ratios Ratios of normal random variable Sciences and techniques of general use Secondary 62F03 Statistics Studies Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds |
title | Confidence Bounds for Multiplicative Comparisons |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A13%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Confidence%20Bounds%20for%20Multiplicative%20Comparisons&rft.jtitle=Communications%20in%20statistics.%20Theory%20and%20methods&rft.au=Ennis,%20John%20M.&rft.date=2011-09-01&rft.volume=40&rft.issue=17&rft.spage=3049&rft.epage=3054&rft.pages=3049-3054&rft.issn=0361-0926&rft.eissn=1532-415X&rft.coden=CSTMDC&rft_id=info:doi/10.1080/03610921003646398&rft_dat=%3Cproquest_pasca%3E2724681091%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c436t-4689688a27629b3d49d19187b4191e0c00ea7fadb743e4c76ca7fc95b63c33753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1030255299&rft_id=info:pmid/&rfr_iscdi=true |