Loading…

Confidence Bounds for Multiplicative Comparisons

Statements that are inherently multiplicative have historically been justified using ratios of random variables. Although recent work on ratios has extended the classical theory to produce confidence bounds conditioned on a positive denominator, this current article offers a novel perspective that e...

Full description

Saved in:
Bibliographic Details
Published in:Communications in statistics. Theory and methods 2011-09, Vol.40 (17), p.3049-3054
Main Authors: Ennis, John M., Ennis, Daniel M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c436t-4689688a27629b3d49d19187b4191e0c00ea7fadb743e4c76ca7fc95b63c33753
cites cdi_FETCH-LOGICAL-c436t-4689688a27629b3d49d19187b4191e0c00ea7fadb743e4c76ca7fc95b63c33753
container_end_page 3054
container_issue 17
container_start_page 3049
container_title Communications in statistics. Theory and methods
container_volume 40
creator Ennis, John M.
Ennis, Daniel M.
description Statements that are inherently multiplicative have historically been justified using ratios of random variables. Although recent work on ratios has extended the classical theory to produce confidence bounds conditioned on a positive denominator, this current article offers a novel perspective that eliminates the need for such a condition. Although seemingly trivial, this new perspective leads to improved lower confidence bounds to support multiplicative statements. This perspective is also more satisfying as it allows comparisons that are inherently multiplicative in nature to be properly analyzed as such.
doi_str_mv 10.1080/03610921003646398
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_24462195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2724681091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-4689688a27629b3d49d19187b4191e0c00ea7fadb743e4c76ca7fc95b63c33753</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYMoOI7-AHcFEVfVvNOAGy2-YMSNgruSpilkSJsxadX592aY0YWDuLr3ku8cTg4AxwieI1jAC0g4ghIjmBbKiSx2wAQxgnOK2OsumKze8wTwfXAQ4xxCxERBJgCWvm9tY3ptsms_9k3MWh-yx9ENduGsVoN9N1npu4UKNvo-HoK9VrlojjZzCl5ub57L-3z2dPdQXs1yTQkfcsoLyYtCYcGxrElDZYMkKkRN0zBQQ2iUaFVTC0oM1YLrdGrJak40IYKRKThb-y6CfxtNHKrORm2cU73xY6zSV3DBGBOJPPlFzv0Y-hSuQpBAzBiWMlFoTengYwymrRbBdiosE1StKqy2Kkya042zilq5Nqhe2_gjxJRyjOQqq1hztk_lderDB9dUg1o6H75FW-7V8Dkk5eW_SvJ3wC9MzZN8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1030255299</pqid></control><display><type>article</type><title>Confidence Bounds for Multiplicative Comparisons</title><source>Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)</source><creator>Ennis, John M. ; Ennis, Daniel M.</creator><creatorcontrib>Ennis, John M. ; Ennis, Daniel M.</creatorcontrib><description>Statements that are inherently multiplicative have historically been justified using ratios of random variables. Although recent work on ratios has extended the classical theory to produce confidence bounds conditioned on a positive denominator, this current article offers a novel perspective that eliminates the need for such a condition. Although seemingly trivial, this new perspective leads to improved lower confidence bounds to support multiplicative statements. This perspective is also more satisfying as it allows comparisons that are inherently multiplicative in nature to be properly analyzed as such.</description><identifier>ISSN: 0361-0926</identifier><identifier>EISSN: 1532-415X</identifier><identifier>DOI: 10.1080/03610921003646398</identifier><identifier>CODEN: CSTMDC</identifier><language>eng</language><publisher>Philadelphia, PA: Taylor &amp; Francis Group</publisher><subject>Conditioning ; Confidence ; Confidence interval ; Confidence intervals ; Estimation ; Exact sciences and technology ; General topics ; Global analysis, analysis on manifolds ; Mathematics ; Multiplicative comparison ; Multiplicative statement ; Nonparametric inference ; Parametric inference ; Primary 62F25 ; Probability and statistics ; Random variables ; Ratio statement ; Ratios ; Ratios of normal random variable ; Sciences and techniques of general use ; Secondary 62F03 ; Statistics ; Studies ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><ispartof>Communications in statistics. Theory and methods, 2011-09, Vol.40 (17), p.3049-3054</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2011</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Taylor &amp; Francis Ltd. 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-4689688a27629b3d49d19187b4191e0c00ea7fadb743e4c76ca7fc95b63c33753</citedby><cites>FETCH-LOGICAL-c436t-4689688a27629b3d49d19187b4191e0c00ea7fadb743e4c76ca7fc95b63c33753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24462195$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ennis, John M.</creatorcontrib><creatorcontrib>Ennis, Daniel M.</creatorcontrib><title>Confidence Bounds for Multiplicative Comparisons</title><title>Communications in statistics. Theory and methods</title><description>Statements that are inherently multiplicative have historically been justified using ratios of random variables. Although recent work on ratios has extended the classical theory to produce confidence bounds conditioned on a positive denominator, this current article offers a novel perspective that eliminates the need for such a condition. Although seemingly trivial, this new perspective leads to improved lower confidence bounds to support multiplicative statements. This perspective is also more satisfying as it allows comparisons that are inherently multiplicative in nature to be properly analyzed as such.</description><subject>Conditioning</subject><subject>Confidence</subject><subject>Confidence interval</subject><subject>Confidence intervals</subject><subject>Estimation</subject><subject>Exact sciences and technology</subject><subject>General topics</subject><subject>Global analysis, analysis on manifolds</subject><subject>Mathematics</subject><subject>Multiplicative comparison</subject><subject>Multiplicative statement</subject><subject>Nonparametric inference</subject><subject>Parametric inference</subject><subject>Primary 62F25</subject><subject>Probability and statistics</subject><subject>Random variables</subject><subject>Ratio statement</subject><subject>Ratios</subject><subject>Ratios of normal random variable</subject><subject>Sciences and techniques of general use</subject><subject>Secondary 62F03</subject><subject>Statistics</subject><subject>Studies</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><issn>0361-0926</issn><issn>1532-415X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAUhYMoOI7-AHcFEVfVvNOAGy2-YMSNgruSpilkSJsxadX592aY0YWDuLr3ku8cTg4AxwieI1jAC0g4ghIjmBbKiSx2wAQxgnOK2OsumKze8wTwfXAQ4xxCxERBJgCWvm9tY3ptsms_9k3MWh-yx9ENduGsVoN9N1npu4UKNvo-HoK9VrlojjZzCl5ub57L-3z2dPdQXs1yTQkfcsoLyYtCYcGxrElDZYMkKkRN0zBQQ2iUaFVTC0oM1YLrdGrJak40IYKRKThb-y6CfxtNHKrORm2cU73xY6zSV3DBGBOJPPlFzv0Y-hSuQpBAzBiWMlFoTengYwymrRbBdiosE1StKqy2Kkya042zilq5Nqhe2_gjxJRyjOQqq1hztk_lderDB9dUg1o6H75FW-7V8Dkk5eW_SvJ3wC9MzZN8</recordid><startdate>20110901</startdate><enddate>20110901</enddate><creator>Ennis, John M.</creator><creator>Ennis, Daniel M.</creator><general>Taylor &amp; Francis Group</general><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110901</creationdate><title>Confidence Bounds for Multiplicative Comparisons</title><author>Ennis, John M. ; Ennis, Daniel M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-4689688a27629b3d49d19187b4191e0c00ea7fadb743e4c76ca7fc95b63c33753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Conditioning</topic><topic>Confidence</topic><topic>Confidence interval</topic><topic>Confidence intervals</topic><topic>Estimation</topic><topic>Exact sciences and technology</topic><topic>General topics</topic><topic>Global analysis, analysis on manifolds</topic><topic>Mathematics</topic><topic>Multiplicative comparison</topic><topic>Multiplicative statement</topic><topic>Nonparametric inference</topic><topic>Parametric inference</topic><topic>Primary 62F25</topic><topic>Probability and statistics</topic><topic>Random variables</topic><topic>Ratio statement</topic><topic>Ratios</topic><topic>Ratios of normal random variable</topic><topic>Sciences and techniques of general use</topic><topic>Secondary 62F03</topic><topic>Statistics</topic><topic>Studies</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ennis, John M.</creatorcontrib><creatorcontrib>Ennis, Daniel M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Communications in statistics. Theory and methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ennis, John M.</au><au>Ennis, Daniel M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Confidence Bounds for Multiplicative Comparisons</atitle><jtitle>Communications in statistics. Theory and methods</jtitle><date>2011-09-01</date><risdate>2011</risdate><volume>40</volume><issue>17</issue><spage>3049</spage><epage>3054</epage><pages>3049-3054</pages><issn>0361-0926</issn><eissn>1532-415X</eissn><coden>CSTMDC</coden><abstract>Statements that are inherently multiplicative have historically been justified using ratios of random variables. Although recent work on ratios has extended the classical theory to produce confidence bounds conditioned on a positive denominator, this current article offers a novel perspective that eliminates the need for such a condition. Although seemingly trivial, this new perspective leads to improved lower confidence bounds to support multiplicative statements. This perspective is also more satisfying as it allows comparisons that are inherently multiplicative in nature to be properly analyzed as such.</abstract><cop>Philadelphia, PA</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/03610921003646398</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-0926
ispartof Communications in statistics. Theory and methods, 2011-09, Vol.40 (17), p.3049-3054
issn 0361-0926
1532-415X
language eng
recordid cdi_pascalfrancis_primary_24462195
source Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)
subjects Conditioning
Confidence
Confidence interval
Confidence intervals
Estimation
Exact sciences and technology
General topics
Global analysis, analysis on manifolds
Mathematics
Multiplicative comparison
Multiplicative statement
Nonparametric inference
Parametric inference
Primary 62F25
Probability and statistics
Random variables
Ratio statement
Ratios
Ratios of normal random variable
Sciences and techniques of general use
Secondary 62F03
Statistics
Studies
Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds
title Confidence Bounds for Multiplicative Comparisons
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A13%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Confidence%20Bounds%20for%20Multiplicative%20Comparisons&rft.jtitle=Communications%20in%20statistics.%20Theory%20and%20methods&rft.au=Ennis,%20John%20M.&rft.date=2011-09-01&rft.volume=40&rft.issue=17&rft.spage=3049&rft.epage=3054&rft.pages=3049-3054&rft.issn=0361-0926&rft.eissn=1532-415X&rft.coden=CSTMDC&rft_id=info:doi/10.1080/03610921003646398&rft_dat=%3Cproquest_pasca%3E2724681091%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c436t-4689688a27629b3d49d19187b4191e0c00ea7fadb743e4c76ca7fc95b63c33753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1030255299&rft_id=info:pmid/&rfr_iscdi=true