Loading…
Solution-Processed Memristive Junctions Used in a Threshold Indicator
Inkjet-patterned memristive metal/oxide/metal structures were characterized to infer ionic and electronic transport parameters such as mobility and ion distribution. The conductance change with respect to voltage and time was measured for an individual crossbar junction and for junctions that are co...
Saved in:
Published in: | IEEE transactions on electron devices 2011-10, Vol.58 (10), p.3435-3443 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Inkjet-patterned memristive metal/oxide/metal structures were characterized to infer ionic and electronic transport parameters such as mobility and ion distribution. The conductance change with respect to voltage and time was measured for an individual crossbar junction and for junctions that are connected in series. It was found that continuous dopant redistribution during voltage scans led to a peak in conductance. The mutable conductance of memristive devices was utilized to demonstrate a threshold indicator, in which the crossbar junctions were connected with a piezo sensor input and an electrophoretic display output. The memristive circuit would switch the color of display pixels, depending on the number of input pulses sensed by the piezo. The threshold indicator demonstrates that memristive junctions can be used as integral control switches. It is composed of passive circuit components and does not require an external battery. |
---|---|
ISSN: | 0018-9383 1557-9646 |
DOI: | 10.1109/TED.2011.2162334 |