Loading…

Solution-Processed Memristive Junctions Used in a Threshold Indicator

Inkjet-patterned memristive metal/oxide/metal structures were characterized to infer ionic and electronic transport parameters such as mobility and ion distribution. The conductance change with respect to voltage and time was measured for an individual crossbar junction and for junctions that are co...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on electron devices 2011-10, Vol.58 (10), p.3435-3443
Main Authors: Tse Nga Ng, Russo, B., Arias, A. C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Inkjet-patterned memristive metal/oxide/metal structures were characterized to infer ionic and electronic transport parameters such as mobility and ion distribution. The conductance change with respect to voltage and time was measured for an individual crossbar junction and for junctions that are connected in series. It was found that continuous dopant redistribution during voltage scans led to a peak in conductance. The mutable conductance of memristive devices was utilized to demonstrate a threshold indicator, in which the crossbar junctions were connected with a piezo sensor input and an electrophoretic display output. The memristive circuit would switch the color of display pixels, depending on the number of input pulses sensed by the piezo. The threshold indicator demonstrates that memristive junctions can be used as integral control switches. It is composed of passive circuit components and does not require an external battery.
ISSN:0018-9383
1557-9646
DOI:10.1109/TED.2011.2162334