Loading…

RF power dependence of the properties of n-type nanocrystalline silicon films deposited by a low-frequency inductively coupled plasma

Nanocrystalline n-type silicon films are deposited by a low-frequency inductively coupled plasma at a low H 2 dilution, low working pressure of 2.0 Pa and low substrate temperature of 150 °C. The radio frequency (RF) power is set in the range 1000–1800 W. The RF power dependence of the structural, o...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. D, Applied physics Applied physics, 2011-11, Vol.44 (45), p.455304-1-6
Main Authors: Yan, W S, Xu, S, Sern, C C, Ong, T M, Zhou, H P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c398t-1f6ea95308c73d875bd9ef04081faf64aed24571e1eb89491c868855f55c220c3
cites cdi_FETCH-LOGICAL-c398t-1f6ea95308c73d875bd9ef04081faf64aed24571e1eb89491c868855f55c220c3
container_end_page 1-6
container_issue 45
container_start_page 455304
container_title Journal of physics. D, Applied physics
container_volume 44
creator Yan, W S
Xu, S
Sern, C C
Ong, T M
Zhou, H P
description Nanocrystalline n-type silicon films are deposited by a low-frequency inductively coupled plasma at a low H 2 dilution, low working pressure of 2.0 Pa and low substrate temperature of 150 °C. The radio frequency (RF) power is set in the range 1000–1800 W. The RF power dependence of the structural, optical and electrical properties of the films is systematically studied. The x-ray diffraction patterns of the films present a (1 1 1)-preferred orientation when the RF power is increased from 1000 to 1800 W. The crystalline volume fraction of the films changes from 51% to 82% while the deposition rate of the films increases from 21 to 36 nm min −1 . The UV–VIS spectra show that the optical band gap is in the range 1.4–1.6 eV. Two characteristic hydrogen-related modes located at ∼630 and ∼2100 cm −1 are observed. The carrier concentration of the films ranges from 0.9 × 10 19 to 1.1 × 10 20  cm −3 depending on the applied RF power. When the RF power is increased, the electron density is increased and the Debye length is decreased while the electron temperature remains nearly constant. The doping mechanism of the present n-type nanocrystalline silicon films is revealed.
doi_str_mv 10.1088/0022-3727/44/45/455304
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_24757974</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1022888253</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-1f6ea95308c73d875bd9ef04081faf64aed24571e1eb89491c868855f55c220c3</originalsourceid><addsrcrecordid>eNqFkNFqHCEUhqUk0O0mr1C8KfRmujqjM85lCdk0EAiE5Fpc50gsrlqdyTIP0PeOw4a9SSAgCPqd_5zzIfSdkl-UCLEhpK6rpqu7DWMbxsvhDWFf0Io2La1a1jZnaHWCvqJvOf8lhPBW0BX6_7DFMRwg4QEi-AG8BhwMHp8BxxQipNFCXl58Nc4RsFc-6DTnUTlnPeBsndXBY2PdPi8hIdsRBrybscIuHCqT4N9UYmds_TDp0b6Am7EOU3QFi07lvbpA50a5DJdv9xo9ba8fr_5Ud_c3t1e_7yrd9GKsqGlB9WU7obtmEB3fDT0YwoigRpmWKRhqxjsKFHaiZz3VohWCc8O5rmuimzX6ecwtq5Wh8ij3NmtwTnkIU5a0WBJC1LwpaHtEdQo5JzAyJrtXaS6QXLzLRalclErGJOPy6L0U_njrobJWziTltc2n6pp1vOu7hauOnA3x9PtxpoyDKTx9z38yyysw2qFP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1022888253</pqid></control><display><type>article</type><title>RF power dependence of the properties of n-type nanocrystalline silicon films deposited by a low-frequency inductively coupled plasma</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Yan, W S ; Xu, S ; Sern, C C ; Ong, T M ; Zhou, H P</creator><creatorcontrib>Yan, W S ; Xu, S ; Sern, C C ; Ong, T M ; Zhou, H P</creatorcontrib><description>Nanocrystalline n-type silicon films are deposited by a low-frequency inductively coupled plasma at a low H 2 dilution, low working pressure of 2.0 Pa and low substrate temperature of 150 °C. The radio frequency (RF) power is set in the range 1000–1800 W. The RF power dependence of the structural, optical and electrical properties of the films is systematically studied. The x-ray diffraction patterns of the films present a (1 1 1)-preferred orientation when the RF power is increased from 1000 to 1800 W. The crystalline volume fraction of the films changes from 51% to 82% while the deposition rate of the films increases from 21 to 36 nm min −1 . The UV–VIS spectra show that the optical band gap is in the range 1.4–1.6 eV. Two characteristic hydrogen-related modes located at ∼630 and ∼2100 cm −1 are observed. The carrier concentration of the films ranges from 0.9 × 10 19 to 1.1 × 10 20  cm −3 depending on the applied RF power. When the RF power is increased, the electron density is increased and the Debye length is decreased while the electron temperature remains nearly constant. The doping mechanism of the present n-type nanocrystalline silicon films is revealed.</description><identifier>ISSN: 0022-3727</identifier><identifier>EISSN: 1361-6463</identifier><identifier>DOI: 10.1088/0022-3727/44/45/455304</identifier><identifier>CODEN: JPAPBE</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Carrier density ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Cross-disciplinary physics: materials science; rheology ; Debye length ; Deposition ; Electric power generation ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Electronic transport in multilayers, nanoscale materials and structures ; Exact sciences and technology ; Inductively coupled plasma ; Materials science ; Nanocrystalline materials ; Nanocrystals ; Nanocrystals and nanoparticles ; Nanoscale materials and structures: fabrication and characterization ; Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation ; Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures ; Physics ; Radio frequencies ; Silicon films</subject><ispartof>Journal of physics. D, Applied physics, 2011-11, Vol.44 (45), p.455304-1-6</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-1f6ea95308c73d875bd9ef04081faf64aed24571e1eb89491c868855f55c220c3</citedby><cites>FETCH-LOGICAL-c398t-1f6ea95308c73d875bd9ef04081faf64aed24571e1eb89491c868855f55c220c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24757974$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yan, W S</creatorcontrib><creatorcontrib>Xu, S</creatorcontrib><creatorcontrib>Sern, C C</creatorcontrib><creatorcontrib>Ong, T M</creatorcontrib><creatorcontrib>Zhou, H P</creatorcontrib><title>RF power dependence of the properties of n-type nanocrystalline silicon films deposited by a low-frequency inductively coupled plasma</title><title>Journal of physics. D, Applied physics</title><description>Nanocrystalline n-type silicon films are deposited by a low-frequency inductively coupled plasma at a low H 2 dilution, low working pressure of 2.0 Pa and low substrate temperature of 150 °C. The radio frequency (RF) power is set in the range 1000–1800 W. The RF power dependence of the structural, optical and electrical properties of the films is systematically studied. The x-ray diffraction patterns of the films present a (1 1 1)-preferred orientation when the RF power is increased from 1000 to 1800 W. The crystalline volume fraction of the films changes from 51% to 82% while the deposition rate of the films increases from 21 to 36 nm min −1 . The UV–VIS spectra show that the optical band gap is in the range 1.4–1.6 eV. Two characteristic hydrogen-related modes located at ∼630 and ∼2100 cm −1 are observed. The carrier concentration of the films ranges from 0.9 × 10 19 to 1.1 × 10 20  cm −3 depending on the applied RF power. When the RF power is increased, the electron density is increased and the Debye length is decreased while the electron temperature remains nearly constant. The doping mechanism of the present n-type nanocrystalline silicon films is revealed.</description><subject>Carrier density</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Debye length</subject><subject>Deposition</subject><subject>Electric power generation</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Electronic transport in multilayers, nanoscale materials and structures</subject><subject>Exact sciences and technology</subject><subject>Inductively coupled plasma</subject><subject>Materials science</subject><subject>Nanocrystalline materials</subject><subject>Nanocrystals</subject><subject>Nanocrystals and nanoparticles</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</subject><subject>Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures</subject><subject>Physics</subject><subject>Radio frequencies</subject><subject>Silicon films</subject><issn>0022-3727</issn><issn>1361-6463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkNFqHCEUhqUk0O0mr1C8KfRmujqjM85lCdk0EAiE5Fpc50gsrlqdyTIP0PeOw4a9SSAgCPqd_5zzIfSdkl-UCLEhpK6rpqu7DWMbxsvhDWFf0Io2La1a1jZnaHWCvqJvOf8lhPBW0BX6_7DFMRwg4QEi-AG8BhwMHp8BxxQipNFCXl58Nc4RsFc-6DTnUTlnPeBsndXBY2PdPi8hIdsRBrybscIuHCqT4N9UYmds_TDp0b6Am7EOU3QFi07lvbpA50a5DJdv9xo9ba8fr_5Ud_c3t1e_7yrd9GKsqGlB9WU7obtmEB3fDT0YwoigRpmWKRhqxjsKFHaiZz3VohWCc8O5rmuimzX6ecwtq5Wh8ij3NmtwTnkIU5a0WBJC1LwpaHtEdQo5JzAyJrtXaS6QXLzLRalclErGJOPy6L0U_njrobJWziTltc2n6pp1vOu7hauOnA3x9PtxpoyDKTx9z38yyysw2qFP</recordid><startdate>20111116</startdate><enddate>20111116</enddate><creator>Yan, W S</creator><creator>Xu, S</creator><creator>Sern, C C</creator><creator>Ong, T M</creator><creator>Zhou, H P</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20111116</creationdate><title>RF power dependence of the properties of n-type nanocrystalline silicon films deposited by a low-frequency inductively coupled plasma</title><author>Yan, W S ; Xu, S ; Sern, C C ; Ong, T M ; Zhou, H P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-1f6ea95308c73d875bd9ef04081faf64aed24571e1eb89491c868855f55c220c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Carrier density</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Debye length</topic><topic>Deposition</topic><topic>Electric power generation</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Electronic transport in multilayers, nanoscale materials and structures</topic><topic>Exact sciences and technology</topic><topic>Inductively coupled plasma</topic><topic>Materials science</topic><topic>Nanocrystalline materials</topic><topic>Nanocrystals</topic><topic>Nanocrystals and nanoparticles</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</topic><topic>Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures</topic><topic>Physics</topic><topic>Radio frequencies</topic><topic>Silicon films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, W S</creatorcontrib><creatorcontrib>Xu, S</creatorcontrib><creatorcontrib>Sern, C C</creatorcontrib><creatorcontrib>Ong, T M</creatorcontrib><creatorcontrib>Zhou, H P</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of physics. D, Applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, W S</au><au>Xu, S</au><au>Sern, C C</au><au>Ong, T M</au><au>Zhou, H P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RF power dependence of the properties of n-type nanocrystalline silicon films deposited by a low-frequency inductively coupled plasma</atitle><jtitle>Journal of physics. D, Applied physics</jtitle><date>2011-11-16</date><risdate>2011</risdate><volume>44</volume><issue>45</issue><spage>455304</spage><epage>1-6</epage><pages>455304-1-6</pages><issn>0022-3727</issn><eissn>1361-6463</eissn><coden>JPAPBE</coden><abstract>Nanocrystalline n-type silicon films are deposited by a low-frequency inductively coupled plasma at a low H 2 dilution, low working pressure of 2.0 Pa and low substrate temperature of 150 °C. The radio frequency (RF) power is set in the range 1000–1800 W. The RF power dependence of the structural, optical and electrical properties of the films is systematically studied. The x-ray diffraction patterns of the films present a (1 1 1)-preferred orientation when the RF power is increased from 1000 to 1800 W. The crystalline volume fraction of the films changes from 51% to 82% while the deposition rate of the films increases from 21 to 36 nm min −1 . The UV–VIS spectra show that the optical band gap is in the range 1.4–1.6 eV. Two characteristic hydrogen-related modes located at ∼630 and ∼2100 cm −1 are observed. The carrier concentration of the films ranges from 0.9 × 10 19 to 1.1 × 10 20  cm −3 depending on the applied RF power. When the RF power is increased, the electron density is increased and the Debye length is decreased while the electron temperature remains nearly constant. The doping mechanism of the present n-type nanocrystalline silicon films is revealed.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/0022-3727/44/45/455304</doi></addata></record>
fulltext fulltext
identifier ISSN: 0022-3727
ispartof Journal of physics. D, Applied physics, 2011-11, Vol.44 (45), p.455304-1-6
issn 0022-3727
1361-6463
language eng
recordid cdi_pascalfrancis_primary_24757974
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects Carrier density
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Cross-disciplinary physics: materials science
rheology
Debye length
Deposition
Electric power generation
Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures
Electronic transport in multilayers, nanoscale materials and structures
Exact sciences and technology
Inductively coupled plasma
Materials science
Nanocrystalline materials
Nanocrystals
Nanocrystals and nanoparticles
Nanoscale materials and structures: fabrication and characterization
Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation
Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures
Physics
Radio frequencies
Silicon films
title RF power dependence of the properties of n-type nanocrystalline silicon films deposited by a low-frequency inductively coupled plasma
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T05%3A25%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RF%20power%20dependence%20of%20the%20properties%20of%20n-type%20nanocrystalline%20silicon%20films%20deposited%20by%20a%20low-frequency%20inductively%20coupled%20plasma&rft.jtitle=Journal%20of%20physics.%20D,%20Applied%20physics&rft.au=Yan,%20W%20S&rft.date=2011-11-16&rft.volume=44&rft.issue=45&rft.spage=455304&rft.epage=1-6&rft.pages=455304-1-6&rft.issn=0022-3727&rft.eissn=1361-6463&rft.coden=JPAPBE&rft_id=info:doi/10.1088/0022-3727/44/45/455304&rft_dat=%3Cproquest_pasca%3E1022888253%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c398t-1f6ea95308c73d875bd9ef04081faf64aed24571e1eb89491c868855f55c220c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1022888253&rft_id=info:pmid/&rfr_iscdi=true