Loading…
Computational Cameras: Convergence of Optics and Processing
A computational camera uses a combination of optics and processing to produce images that cannot be captured with traditional cameras. In the last decade, computational imaging has emerged as a vibrant field of research. A wide variety of computational cameras has been demonstrated to encode more us...
Saved in:
Published in: | IEEE transactions on image processing 2011-12, Vol.20 (12), p.3322-3340 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c563t-b19f846dc6cd54658af5f7226139e0dd709dc9d1aa5a8b1ed864c136b72339353 |
---|---|
cites | cdi_FETCH-LOGICAL-c563t-b19f846dc6cd54658af5f7226139e0dd709dc9d1aa5a8b1ed864c136b72339353 |
container_end_page | 3340 |
container_issue | 12 |
container_start_page | 3322 |
container_title | IEEE transactions on image processing |
container_volume | 20 |
creator | Changyin Zhou Nayar, S. K. |
description | A computational camera uses a combination of optics and processing to produce images that cannot be captured with traditional cameras. In the last decade, computational imaging has emerged as a vibrant field of research. A wide variety of computational cameras has been demonstrated to encode more useful visual information in the captured images, as compared with conventional cameras. In this paper, we survey computational cameras from two perspectives. First, we present a taxonomy of computational camera designs according to the coding approaches, including object side coding, pupil plane coding, sensor side coding, illumination coding, camera arrays and clusters, and unconventional imaging systems. Second, we use the abstract notion of light field representation as a general tool to describe computational camera designs, where each camera can be formulated as a projection of a high-dimensional light field to a 2-D image sensor. We show how individual optical devices transform light fields and use these transforms to illustrate how different computational camera designs (collections of optical devices) capture and encode useful visual information. |
doi_str_mv | 10.1109/TIP.2011.2171700 |
format | article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_25285474</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6051490</ieee_id><sourcerecordid>905873027</sourcerecordid><originalsourceid>FETCH-LOGICAL-c563t-b19f846dc6cd54658af5f7226139e0dd709dc9d1aa5a8b1ed864c136b72339353</originalsourceid><addsrcrecordid>eNp90U1LHTEUBuAgLWpt90KhDIWim7k9J99pV2WoVhB0YddDbpKRkZnJbTIj9N8bvVcLXbjKgTznLN6XkGOEFSKYrzcX1ysKiCuKChXAHjlEw7EG4PRNmUGoWiE3B-RdzncAyAXKfXJAKVCQGg_J9yaOm2W2cx8nO1SNHUOy-VvVxOk-pNswuVDFrrrazL3LlZ18dZ2iCzn30-178razQw4fdu8R-X3286b5VV9enV80Py5rJySb6zWaTnPpnXRecCm07USnKJXITADvFRjvjEdrhdVrDF5L7pDJtaKMGSbYETnZ3t2k-GcJeW7HPrswDHYKccmtAaEVA6qKPH1VoixpcK61LvTzf_QuLqlk8HSvpEMNKwi2yKWYcwpdu0n9aNPfFqF9bKAtDbSPDbS7BsrKp93dZT0G_7LwHHkBX3bAZmeHLtnJ9fmfE1QLrnhxH7euDyG8fEsQpU9gD3w3k_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>905206293</pqid></control><display><type>article</type><title>Computational Cameras: Convergence of Optics and Processing</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Changyin Zhou ; Nayar, S. K.</creator><creatorcontrib>Changyin Zhou ; Nayar, S. K.</creatorcontrib><description>A computational camera uses a combination of optics and processing to produce images that cannot be captured with traditional cameras. In the last decade, computational imaging has emerged as a vibrant field of research. A wide variety of computational cameras has been demonstrated to encode more useful visual information in the captured images, as compared with conventional cameras. In this paper, we survey computational cameras from two perspectives. First, we present a taxonomy of computational camera designs according to the coding approaches, including object side coding, pupil plane coding, sensor side coding, illumination coding, camera arrays and clusters, and unconventional imaging systems. Second, we use the abstract notion of light field representation as a general tool to describe computational camera designs, where each camera can be formulated as a projection of a high-dimensional light field to a 2-D image sensor. We show how individual optical devices transform light fields and use these transforms to illustrate how different computational camera designs (collections of optical devices) capture and encode useful visual information.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2011.2171700</identifier><identifier>PMID: 22020681</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Artificial intelligence ; Cameras ; Coding ; Coding, codes ; Computation ; Computer science; control theory; systems ; Computer vision ; Design engineering ; Detectors ; Devices ; Exact sciences and technology ; Image coding ; Image processing ; Imaging ; Information, signal and communications theory ; Lenses ; Optical devices ; optics ; Pattern recognition. Digital image processing. Computational geometry ; Sensors ; Signal and communications theory ; Signal processing ; Telecommunications and information theory</subject><ispartof>IEEE transactions on image processing, 2011-12, Vol.20 (12), p.3322-3340</ispartof><rights>2015 INIST-CNRS</rights><rights>2011 IEEE</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c563t-b19f846dc6cd54658af5f7226139e0dd709dc9d1aa5a8b1ed864c136b72339353</citedby><cites>FETCH-LOGICAL-c563t-b19f846dc6cd54658af5f7226139e0dd709dc9d1aa5a8b1ed864c136b72339353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6051490$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25285474$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22020681$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Changyin Zhou</creatorcontrib><creatorcontrib>Nayar, S. K.</creatorcontrib><title>Computational Cameras: Convergence of Optics and Processing</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>A computational camera uses a combination of optics and processing to produce images that cannot be captured with traditional cameras. In the last decade, computational imaging has emerged as a vibrant field of research. A wide variety of computational cameras has been demonstrated to encode more useful visual information in the captured images, as compared with conventional cameras. In this paper, we survey computational cameras from two perspectives. First, we present a taxonomy of computational camera designs according to the coding approaches, including object side coding, pupil plane coding, sensor side coding, illumination coding, camera arrays and clusters, and unconventional imaging systems. Second, we use the abstract notion of light field representation as a general tool to describe computational camera designs, where each camera can be formulated as a projection of a high-dimensional light field to a 2-D image sensor. We show how individual optical devices transform light fields and use these transforms to illustrate how different computational camera designs (collections of optical devices) capture and encode useful visual information.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Cameras</subject><subject>Coding</subject><subject>Coding, codes</subject><subject>Computation</subject><subject>Computer science; control theory; systems</subject><subject>Computer vision</subject><subject>Design engineering</subject><subject>Detectors</subject><subject>Devices</subject><subject>Exact sciences and technology</subject><subject>Image coding</subject><subject>Image processing</subject><subject>Imaging</subject><subject>Information, signal and communications theory</subject><subject>Lenses</subject><subject>Optical devices</subject><subject>optics</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Sensors</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Telecommunications and information theory</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp90U1LHTEUBuAgLWpt90KhDIWim7k9J99pV2WoVhB0YddDbpKRkZnJbTIj9N8bvVcLXbjKgTznLN6XkGOEFSKYrzcX1ysKiCuKChXAHjlEw7EG4PRNmUGoWiE3B-RdzncAyAXKfXJAKVCQGg_J9yaOm2W2cx8nO1SNHUOy-VvVxOk-pNswuVDFrrrazL3LlZ18dZ2iCzn30-178razQw4fdu8R-X3286b5VV9enV80Py5rJySb6zWaTnPpnXRecCm07USnKJXITADvFRjvjEdrhdVrDF5L7pDJtaKMGSbYETnZ3t2k-GcJeW7HPrswDHYKccmtAaEVA6qKPH1VoixpcK61LvTzf_QuLqlk8HSvpEMNKwi2yKWYcwpdu0n9aNPfFqF9bKAtDbSPDbS7BsrKp93dZT0G_7LwHHkBX3bAZmeHLtnJ9fmfE1QLrnhxH7euDyG8fEsQpU9gD3w3k_g</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Changyin Zhou</creator><creator>Nayar, S. K.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>7X8</scope></search><sort><creationdate>20111201</creationdate><title>Computational Cameras: Convergence of Optics and Processing</title><author>Changyin Zhou ; Nayar, S. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c563t-b19f846dc6cd54658af5f7226139e0dd709dc9d1aa5a8b1ed864c136b72339353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Cameras</topic><topic>Coding</topic><topic>Coding, codes</topic><topic>Computation</topic><topic>Computer science; control theory; systems</topic><topic>Computer vision</topic><topic>Design engineering</topic><topic>Detectors</topic><topic>Devices</topic><topic>Exact sciences and technology</topic><topic>Image coding</topic><topic>Image processing</topic><topic>Imaging</topic><topic>Information, signal and communications theory</topic><topic>Lenses</topic><topic>Optical devices</topic><topic>optics</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Sensors</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Changyin Zhou</creatorcontrib><creatorcontrib>Nayar, S. K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Changyin Zhou</au><au>Nayar, S. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational Cameras: Convergence of Optics and Processing</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2011-12-01</date><risdate>2011</risdate><volume>20</volume><issue>12</issue><spage>3322</spage><epage>3340</epage><pages>3322-3340</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>A computational camera uses a combination of optics and processing to produce images that cannot be captured with traditional cameras. In the last decade, computational imaging has emerged as a vibrant field of research. A wide variety of computational cameras has been demonstrated to encode more useful visual information in the captured images, as compared with conventional cameras. In this paper, we survey computational cameras from two perspectives. First, we present a taxonomy of computational camera designs according to the coding approaches, including object side coding, pupil plane coding, sensor side coding, illumination coding, camera arrays and clusters, and unconventional imaging systems. Second, we use the abstract notion of light field representation as a general tool to describe computational camera designs, where each camera can be formulated as a projection of a high-dimensional light field to a 2-D image sensor. We show how individual optical devices transform light fields and use these transforms to illustrate how different computational camera designs (collections of optical devices) capture and encode useful visual information.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>22020681</pmid><doi>10.1109/TIP.2011.2171700</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2011-12, Vol.20 (12), p.3322-3340 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_pascalfrancis_primary_25285474 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Applied sciences Artificial intelligence Cameras Coding Coding, codes Computation Computer science control theory systems Computer vision Design engineering Detectors Devices Exact sciences and technology Image coding Image processing Imaging Information, signal and communications theory Lenses Optical devices optics Pattern recognition. Digital image processing. Computational geometry Sensors Signal and communications theory Signal processing Telecommunications and information theory |
title | Computational Cameras: Convergence of Optics and Processing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T13%3A11%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20Cameras:%20Convergence%20of%20Optics%20and%20Processing&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Changyin%20Zhou&rft.date=2011-12-01&rft.volume=20&rft.issue=12&rft.spage=3322&rft.epage=3340&rft.pages=3322-3340&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2011.2171700&rft_dat=%3Cproquest_pasca%3E905873027%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c563t-b19f846dc6cd54658af5f7226139e0dd709dc9d1aa5a8b1ed864c136b72339353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=905206293&rft_id=info:pmid/22020681&rft_ieee_id=6051490&rfr_iscdi=true |