Loading…

Computational Cameras: Convergence of Optics and Processing

A computational camera uses a combination of optics and processing to produce images that cannot be captured with traditional cameras. In the last decade, computational imaging has emerged as a vibrant field of research. A wide variety of computational cameras has been demonstrated to encode more us...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on image processing 2011-12, Vol.20 (12), p.3322-3340
Main Authors: Changyin Zhou, Nayar, S. K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c563t-b19f846dc6cd54658af5f7226139e0dd709dc9d1aa5a8b1ed864c136b72339353
cites cdi_FETCH-LOGICAL-c563t-b19f846dc6cd54658af5f7226139e0dd709dc9d1aa5a8b1ed864c136b72339353
container_end_page 3340
container_issue 12
container_start_page 3322
container_title IEEE transactions on image processing
container_volume 20
creator Changyin Zhou
Nayar, S. K.
description A computational camera uses a combination of optics and processing to produce images that cannot be captured with traditional cameras. In the last decade, computational imaging has emerged as a vibrant field of research. A wide variety of computational cameras has been demonstrated to encode more useful visual information in the captured images, as compared with conventional cameras. In this paper, we survey computational cameras from two perspectives. First, we present a taxonomy of computational camera designs according to the coding approaches, including object side coding, pupil plane coding, sensor side coding, illumination coding, camera arrays and clusters, and unconventional imaging systems. Second, we use the abstract notion of light field representation as a general tool to describe computational camera designs, where each camera can be formulated as a projection of a high-dimensional light field to a 2-D image sensor. We show how individual optical devices transform light fields and use these transforms to illustrate how different computational camera designs (collections of optical devices) capture and encode useful visual information.
doi_str_mv 10.1109/TIP.2011.2171700
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_25285474</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6051490</ieee_id><sourcerecordid>905873027</sourcerecordid><originalsourceid>FETCH-LOGICAL-c563t-b19f846dc6cd54658af5f7226139e0dd709dc9d1aa5a8b1ed864c136b72339353</originalsourceid><addsrcrecordid>eNp90U1LHTEUBuAgLWpt90KhDIWim7k9J99pV2WoVhB0YddDbpKRkZnJbTIj9N8bvVcLXbjKgTznLN6XkGOEFSKYrzcX1ysKiCuKChXAHjlEw7EG4PRNmUGoWiE3B-RdzncAyAXKfXJAKVCQGg_J9yaOm2W2cx8nO1SNHUOy-VvVxOk-pNswuVDFrrrazL3LlZ18dZ2iCzn30-178razQw4fdu8R-X3286b5VV9enV80Py5rJySb6zWaTnPpnXRecCm07USnKJXITADvFRjvjEdrhdVrDF5L7pDJtaKMGSbYETnZ3t2k-GcJeW7HPrswDHYKccmtAaEVA6qKPH1VoixpcK61LvTzf_QuLqlk8HSvpEMNKwi2yKWYcwpdu0n9aNPfFqF9bKAtDbSPDbS7BsrKp93dZT0G_7LwHHkBX3bAZmeHLtnJ9fmfE1QLrnhxH7euDyG8fEsQpU9gD3w3k_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>905206293</pqid></control><display><type>article</type><title>Computational Cameras: Convergence of Optics and Processing</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Changyin Zhou ; Nayar, S. K.</creator><creatorcontrib>Changyin Zhou ; Nayar, S. K.</creatorcontrib><description>A computational camera uses a combination of optics and processing to produce images that cannot be captured with traditional cameras. In the last decade, computational imaging has emerged as a vibrant field of research. A wide variety of computational cameras has been demonstrated to encode more useful visual information in the captured images, as compared with conventional cameras. In this paper, we survey computational cameras from two perspectives. First, we present a taxonomy of computational camera designs according to the coding approaches, including object side coding, pupil plane coding, sensor side coding, illumination coding, camera arrays and clusters, and unconventional imaging systems. Second, we use the abstract notion of light field representation as a general tool to describe computational camera designs, where each camera can be formulated as a projection of a high-dimensional light field to a 2-D image sensor. We show how individual optical devices transform light fields and use these transforms to illustrate how different computational camera designs (collections of optical devices) capture and encode useful visual information.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2011.2171700</identifier><identifier>PMID: 22020681</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Artificial intelligence ; Cameras ; Coding ; Coding, codes ; Computation ; Computer science; control theory; systems ; Computer vision ; Design engineering ; Detectors ; Devices ; Exact sciences and technology ; Image coding ; Image processing ; Imaging ; Information, signal and communications theory ; Lenses ; Optical devices ; optics ; Pattern recognition. Digital image processing. Computational geometry ; Sensors ; Signal and communications theory ; Signal processing ; Telecommunications and information theory</subject><ispartof>IEEE transactions on image processing, 2011-12, Vol.20 (12), p.3322-3340</ispartof><rights>2015 INIST-CNRS</rights><rights>2011 IEEE</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c563t-b19f846dc6cd54658af5f7226139e0dd709dc9d1aa5a8b1ed864c136b72339353</citedby><cites>FETCH-LOGICAL-c563t-b19f846dc6cd54658af5f7226139e0dd709dc9d1aa5a8b1ed864c136b72339353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6051490$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25285474$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22020681$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Changyin Zhou</creatorcontrib><creatorcontrib>Nayar, S. K.</creatorcontrib><title>Computational Cameras: Convergence of Optics and Processing</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>A computational camera uses a combination of optics and processing to produce images that cannot be captured with traditional cameras. In the last decade, computational imaging has emerged as a vibrant field of research. A wide variety of computational cameras has been demonstrated to encode more useful visual information in the captured images, as compared with conventional cameras. In this paper, we survey computational cameras from two perspectives. First, we present a taxonomy of computational camera designs according to the coding approaches, including object side coding, pupil plane coding, sensor side coding, illumination coding, camera arrays and clusters, and unconventional imaging systems. Second, we use the abstract notion of light field representation as a general tool to describe computational camera designs, where each camera can be formulated as a projection of a high-dimensional light field to a 2-D image sensor. We show how individual optical devices transform light fields and use these transforms to illustrate how different computational camera designs (collections of optical devices) capture and encode useful visual information.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Cameras</subject><subject>Coding</subject><subject>Coding, codes</subject><subject>Computation</subject><subject>Computer science; control theory; systems</subject><subject>Computer vision</subject><subject>Design engineering</subject><subject>Detectors</subject><subject>Devices</subject><subject>Exact sciences and technology</subject><subject>Image coding</subject><subject>Image processing</subject><subject>Imaging</subject><subject>Information, signal and communications theory</subject><subject>Lenses</subject><subject>Optical devices</subject><subject>optics</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Sensors</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Telecommunications and information theory</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp90U1LHTEUBuAgLWpt90KhDIWim7k9J99pV2WoVhB0YddDbpKRkZnJbTIj9N8bvVcLXbjKgTznLN6XkGOEFSKYrzcX1ysKiCuKChXAHjlEw7EG4PRNmUGoWiE3B-RdzncAyAXKfXJAKVCQGg_J9yaOm2W2cx8nO1SNHUOy-VvVxOk-pNswuVDFrrrazL3LlZ18dZ2iCzn30-178razQw4fdu8R-X3286b5VV9enV80Py5rJySb6zWaTnPpnXRecCm07USnKJXITADvFRjvjEdrhdVrDF5L7pDJtaKMGSbYETnZ3t2k-GcJeW7HPrswDHYKccmtAaEVA6qKPH1VoixpcK61LvTzf_QuLqlk8HSvpEMNKwi2yKWYcwpdu0n9aNPfFqF9bKAtDbSPDbS7BsrKp93dZT0G_7LwHHkBX3bAZmeHLtnJ9fmfE1QLrnhxH7euDyG8fEsQpU9gD3w3k_g</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Changyin Zhou</creator><creator>Nayar, S. K.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>7X8</scope></search><sort><creationdate>20111201</creationdate><title>Computational Cameras: Convergence of Optics and Processing</title><author>Changyin Zhou ; Nayar, S. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c563t-b19f846dc6cd54658af5f7226139e0dd709dc9d1aa5a8b1ed864c136b72339353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Cameras</topic><topic>Coding</topic><topic>Coding, codes</topic><topic>Computation</topic><topic>Computer science; control theory; systems</topic><topic>Computer vision</topic><topic>Design engineering</topic><topic>Detectors</topic><topic>Devices</topic><topic>Exact sciences and technology</topic><topic>Image coding</topic><topic>Image processing</topic><topic>Imaging</topic><topic>Information, signal and communications theory</topic><topic>Lenses</topic><topic>Optical devices</topic><topic>optics</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Sensors</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Changyin Zhou</creatorcontrib><creatorcontrib>Nayar, S. K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Changyin Zhou</au><au>Nayar, S. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational Cameras: Convergence of Optics and Processing</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2011-12-01</date><risdate>2011</risdate><volume>20</volume><issue>12</issue><spage>3322</spage><epage>3340</epage><pages>3322-3340</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>A computational camera uses a combination of optics and processing to produce images that cannot be captured with traditional cameras. In the last decade, computational imaging has emerged as a vibrant field of research. A wide variety of computational cameras has been demonstrated to encode more useful visual information in the captured images, as compared with conventional cameras. In this paper, we survey computational cameras from two perspectives. First, we present a taxonomy of computational camera designs according to the coding approaches, including object side coding, pupil plane coding, sensor side coding, illumination coding, camera arrays and clusters, and unconventional imaging systems. Second, we use the abstract notion of light field representation as a general tool to describe computational camera designs, where each camera can be formulated as a projection of a high-dimensional light field to a 2-D image sensor. We show how individual optical devices transform light fields and use these transforms to illustrate how different computational camera designs (collections of optical devices) capture and encode useful visual information.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>22020681</pmid><doi>10.1109/TIP.2011.2171700</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2011-12, Vol.20 (12), p.3322-3340
issn 1057-7149
1941-0042
language eng
recordid cdi_pascalfrancis_primary_25285474
source IEEE Electronic Library (IEL) Journals
subjects Applied sciences
Artificial intelligence
Cameras
Coding
Coding, codes
Computation
Computer science
control theory
systems
Computer vision
Design engineering
Detectors
Devices
Exact sciences and technology
Image coding
Image processing
Imaging
Information, signal and communications theory
Lenses
Optical devices
optics
Pattern recognition. Digital image processing. Computational geometry
Sensors
Signal and communications theory
Signal processing
Telecommunications and information theory
title Computational Cameras: Convergence of Optics and Processing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T13%3A11%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20Cameras:%20Convergence%20of%20Optics%20and%20Processing&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Changyin%20Zhou&rft.date=2011-12-01&rft.volume=20&rft.issue=12&rft.spage=3322&rft.epage=3340&rft.pages=3322-3340&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2011.2171700&rft_dat=%3Cproquest_pasca%3E905873027%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c563t-b19f846dc6cd54658af5f7226139e0dd709dc9d1aa5a8b1ed864c136b72339353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=905206293&rft_id=info:pmid/22020681&rft_ieee_id=6051490&rfr_iscdi=true