Loading…
Generalized Random Walks for Fusion of Multi-Exposure Images
A single captured image of a real-world scene is usually insufficient to reveal all the details due to under- or over-exposed regions. To solve this problem, images of the same scene can be first captured under different exposure settings and then combined into a single image using image fusion tech...
Saved in:
Published in: | IEEE transactions on image processing 2011-12, Vol.20 (12), p.3634-3646 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A single captured image of a real-world scene is usually insufficient to reveal all the details due to under- or over-exposed regions. To solve this problem, images of the same scene can be first captured under different exposure settings and then combined into a single image using image fusion techniques. In this paper, we propose a novel probabilistic model-based fusion technique for multi-exposure images. Unlike previous multi-exposure fusion methods, our method aims to achieve an optimal balance between two quality measures, i.e., local contrast and color consistency, while combining the scene details revealed under different exposures. A generalized random walks framework is proposed to calculate a globally optimal solution subject to the two quality measures by formulating the fusion problem as probability estimation. Experiments demonstrate that our algorithm generates high-quality images at low computational cost. Comparisons with a number of other techniques show that our method generates better results in most cases. |
---|---|
ISSN: | 1057-7149 1941-0042 |
DOI: | 10.1109/TIP.2011.2150235 |