Loading…
Integrated pan-Arctic melt onset detection from satellite active and passive microwave measurements, 2000-2009
An integrated pan‐Arctic melt onset data set is generated for the first time by combining estimates derived from active and passive microwave satellite data using algorithms developed for the northern high‐latitude land surface, ice caps, large lakes, and sea ice. The data set yields new insights in...
Saved in:
Published in: | Journal of Geophysical Research: Atmospheres 2011-11, Vol.116 (D22), p.n/a |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3487-41556f7358069be7da129868cfed6de5af45c52f15db08a66a03bdc101c562963 |
---|---|
cites | |
container_end_page | n/a |
container_issue | D22 |
container_start_page | |
container_title | Journal of Geophysical Research: Atmospheres |
container_volume | 116 |
creator | Wang, L. Wolken, G. J. Sharp, M. J. Howell, S. E. L. Derksen, C. Brown, R. D. Markus, T. Cole, J. |
description | An integrated pan‐Arctic melt onset data set is generated for the first time by combining estimates derived from active and passive microwave satellite data using algorithms developed for the northern high‐latitude land surface, ice caps, large lakes, and sea ice. The data set yields new insights into the spatial and temporal patterns of mean melt onset date (MMOD) and the associated geographic and topographic controls. For example, in the terrestrial Arctic, tree fraction and latitude explain more than 60% of the variance in MMOD, with the former exerting a stronger influence on MMOD than the latter. Elevation is also found to be an important factor controlling MMOD, with most of the Arctic exhibiting significant positive relationships between MMOD and elevation, with a mean value of 24.5 m d−1. Melt onset progresses fastest over land areas of uniform cover or elevation (40–80 km d−1) or both and slows down in mountainous areas, on ice caps, and in the forest‐tundra ecotones. Over sea ice, melt onset advances very slowly in the marginal seas, while in the central Arctic the rate of advance can exceed 100 km d−1. Comparison of the observed MMOD with simulated values from the third version of the Canadian Coupled Global Climate Model showed good agreement over land areas but weaker agreement over sea ice, particularly in the central Arctic, where simulated MMOD is about 2–3 weeks later than observed because of a cold bias in simulated surface air temperatures over sea ice.
Key Points
First integrated pan‐Arctic melt onset data set
First map of melt progression rate
Unique data set for GCM validation |
doi_str_mv | 10.1029/2011JD016256 |
format | article |
fullrecord | <record><control><sourceid>istex_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_25340357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_5JNJPKQQ_V</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3487-41556f7358069be7da129868cfed6de5af45c52f15db08a66a03bdc101c562963</originalsourceid><addsrcrecordid>eNpNUMtOwzAQtBBIVKU3PsAXbgT8iO3kWLVQGqpCEY-j5ToOCiROZRtK_x5HRRV72FntzuyuBoBzjK4wIvk1QRgXU4Q5YfwIDAhmPCEEkWMwQDjNEkSIOAUj7z9QjJTxFOEBsHMbzLtTwZRwo2wydjrUGramCbCz3gRYmmBir7Owcl0LfaQ2TR0MVLH7HcH2Su_7uq2167aqr4zyX860xgZ_CUm8mMSUn4GTSjXejP5wCF5ub54nd8niYTafjBeJpmkmkhQzxitBWYZ4vjaiVJjkGc90ZUpeGqaqlGlGKszKNcoU5wrRdakxwppxknM6BBf7vfEzrZrKKatrLzeubpXbScJoiigTkUf3vG3dmN1hjpHsPZX_PZXF7GmKBc17VbJX1T6Yn4NKuU_JBRVMvi1nkhXL4vF-tZKv9BdnFXmp</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Integrated pan-Arctic melt onset detection from satellite active and passive microwave measurements, 2000-2009</title><source>Wiley Online Library AGU 2017</source><creator>Wang, L. ; Wolken, G. J. ; Sharp, M. J. ; Howell, S. E. L. ; Derksen, C. ; Brown, R. D. ; Markus, T. ; Cole, J.</creator><creatorcontrib>Wang, L. ; Wolken, G. J. ; Sharp, M. J. ; Howell, S. E. L. ; Derksen, C. ; Brown, R. D. ; Markus, T. ; Cole, J.</creatorcontrib><description>An integrated pan‐Arctic melt onset data set is generated for the first time by combining estimates derived from active and passive microwave satellite data using algorithms developed for the northern high‐latitude land surface, ice caps, large lakes, and sea ice. The data set yields new insights into the spatial and temporal patterns of mean melt onset date (MMOD) and the associated geographic and topographic controls. For example, in the terrestrial Arctic, tree fraction and latitude explain more than 60% of the variance in MMOD, with the former exerting a stronger influence on MMOD than the latter. Elevation is also found to be an important factor controlling MMOD, with most of the Arctic exhibiting significant positive relationships between MMOD and elevation, with a mean value of 24.5 m d−1. Melt onset progresses fastest over land areas of uniform cover or elevation (40–80 km d−1) or both and slows down in mountainous areas, on ice caps, and in the forest‐tundra ecotones. Over sea ice, melt onset advances very slowly in the marginal seas, while in the central Arctic the rate of advance can exceed 100 km d−1. Comparison of the observed MMOD with simulated values from the third version of the Canadian Coupled Global Climate Model showed good agreement over land areas but weaker agreement over sea ice, particularly in the central Arctic, where simulated MMOD is about 2–3 weeks later than observed because of a cold bias in simulated surface air temperatures over sea ice.
Key Points
First integrated pan‐Arctic melt onset data set
First map of melt progression rate
Unique data set for GCM validation</description><identifier>ISSN: 0148-0227</identifier><identifier>EISSN: 2156-2202</identifier><identifier>DOI: 10.1029/2011JD016256</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>active microwave ; cryosphere ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; melt onset ; pan-Arctic ; passive microwave</subject><ispartof>Journal of Geophysical Research: Atmospheres, 2011-11, Vol.116 (D22), p.n/a</ispartof><rights>Copyright 2011 by the American Geophysical Union.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3487-41556f7358069be7da129868cfed6de5af45c52f15db08a66a03bdc101c562963</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2011JD016256$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2011JD016256$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,11495,27905,27906,46449,46873</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25340357$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, L.</creatorcontrib><creatorcontrib>Wolken, G. J.</creatorcontrib><creatorcontrib>Sharp, M. J.</creatorcontrib><creatorcontrib>Howell, S. E. L.</creatorcontrib><creatorcontrib>Derksen, C.</creatorcontrib><creatorcontrib>Brown, R. D.</creatorcontrib><creatorcontrib>Markus, T.</creatorcontrib><creatorcontrib>Cole, J.</creatorcontrib><title>Integrated pan-Arctic melt onset detection from satellite active and passive microwave measurements, 2000-2009</title><title>Journal of Geophysical Research: Atmospheres</title><addtitle>J. Geophys. Res</addtitle><description>An integrated pan‐Arctic melt onset data set is generated for the first time by combining estimates derived from active and passive microwave satellite data using algorithms developed for the northern high‐latitude land surface, ice caps, large lakes, and sea ice. The data set yields new insights into the spatial and temporal patterns of mean melt onset date (MMOD) and the associated geographic and topographic controls. For example, in the terrestrial Arctic, tree fraction and latitude explain more than 60% of the variance in MMOD, with the former exerting a stronger influence on MMOD than the latter. Elevation is also found to be an important factor controlling MMOD, with most of the Arctic exhibiting significant positive relationships between MMOD and elevation, with a mean value of 24.5 m d−1. Melt onset progresses fastest over land areas of uniform cover or elevation (40–80 km d−1) or both and slows down in mountainous areas, on ice caps, and in the forest‐tundra ecotones. Over sea ice, melt onset advances very slowly in the marginal seas, while in the central Arctic the rate of advance can exceed 100 km d−1. Comparison of the observed MMOD with simulated values from the third version of the Canadian Coupled Global Climate Model showed good agreement over land areas but weaker agreement over sea ice, particularly in the central Arctic, where simulated MMOD is about 2–3 weeks later than observed because of a cold bias in simulated surface air temperatures over sea ice.
Key Points
First integrated pan‐Arctic melt onset data set
First map of melt progression rate
Unique data set for GCM validation</description><subject>active microwave</subject><subject>cryosphere</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>melt onset</subject><subject>pan-Arctic</subject><subject>passive microwave</subject><issn>0148-0227</issn><issn>2156-2202</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpNUMtOwzAQtBBIVKU3PsAXbgT8iO3kWLVQGqpCEY-j5ToOCiROZRtK_x5HRRV72FntzuyuBoBzjK4wIvk1QRgXU4Q5YfwIDAhmPCEEkWMwQDjNEkSIOAUj7z9QjJTxFOEBsHMbzLtTwZRwo2wydjrUGramCbCz3gRYmmBir7Owcl0LfaQ2TR0MVLH7HcH2Su_7uq2167aqr4zyX860xgZ_CUm8mMSUn4GTSjXejP5wCF5ub54nd8niYTafjBeJpmkmkhQzxitBWYZ4vjaiVJjkGc90ZUpeGqaqlGlGKszKNcoU5wrRdakxwppxknM6BBf7vfEzrZrKKatrLzeubpXbScJoiigTkUf3vG3dmN1hjpHsPZX_PZXF7GmKBc17VbJX1T6Yn4NKuU_JBRVMvi1nkhXL4vF-tZKv9BdnFXmp</recordid><startdate>20111127</startdate><enddate>20111127</enddate><creator>Wang, L.</creator><creator>Wolken, G. J.</creator><creator>Sharp, M. J.</creator><creator>Howell, S. E. L.</creator><creator>Derksen, C.</creator><creator>Brown, R. D.</creator><creator>Markus, T.</creator><creator>Cole, J.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope></search><sort><creationdate>20111127</creationdate><title>Integrated pan-Arctic melt onset detection from satellite active and passive microwave measurements, 2000-2009</title><author>Wang, L. ; Wolken, G. J. ; Sharp, M. J. ; Howell, S. E. L. ; Derksen, C. ; Brown, R. D. ; Markus, T. ; Cole, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3487-41556f7358069be7da129868cfed6de5af45c52f15db08a66a03bdc101c562963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>active microwave</topic><topic>cryosphere</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>melt onset</topic><topic>pan-Arctic</topic><topic>passive microwave</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, L.</creatorcontrib><creatorcontrib>Wolken, G. J.</creatorcontrib><creatorcontrib>Sharp, M. J.</creatorcontrib><creatorcontrib>Howell, S. E. L.</creatorcontrib><creatorcontrib>Derksen, C.</creatorcontrib><creatorcontrib>Brown, R. D.</creatorcontrib><creatorcontrib>Markus, T.</creatorcontrib><creatorcontrib>Cole, J.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><jtitle>Journal of Geophysical Research: Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, L.</au><au>Wolken, G. J.</au><au>Sharp, M. J.</au><au>Howell, S. E. L.</au><au>Derksen, C.</au><au>Brown, R. D.</au><au>Markus, T.</au><au>Cole, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrated pan-Arctic melt onset detection from satellite active and passive microwave measurements, 2000-2009</atitle><jtitle>Journal of Geophysical Research: Atmospheres</jtitle><addtitle>J. Geophys. Res</addtitle><date>2011-11-27</date><risdate>2011</risdate><volume>116</volume><issue>D22</issue><epage>n/a</epage><issn>0148-0227</issn><eissn>2156-2202</eissn><abstract>An integrated pan‐Arctic melt onset data set is generated for the first time by combining estimates derived from active and passive microwave satellite data using algorithms developed for the northern high‐latitude land surface, ice caps, large lakes, and sea ice. The data set yields new insights into the spatial and temporal patterns of mean melt onset date (MMOD) and the associated geographic and topographic controls. For example, in the terrestrial Arctic, tree fraction and latitude explain more than 60% of the variance in MMOD, with the former exerting a stronger influence on MMOD than the latter. Elevation is also found to be an important factor controlling MMOD, with most of the Arctic exhibiting significant positive relationships between MMOD and elevation, with a mean value of 24.5 m d−1. Melt onset progresses fastest over land areas of uniform cover or elevation (40–80 km d−1) or both and slows down in mountainous areas, on ice caps, and in the forest‐tundra ecotones. Over sea ice, melt onset advances very slowly in the marginal seas, while in the central Arctic the rate of advance can exceed 100 km d−1. Comparison of the observed MMOD with simulated values from the third version of the Canadian Coupled Global Climate Model showed good agreement over land areas but weaker agreement over sea ice, particularly in the central Arctic, where simulated MMOD is about 2–3 weeks later than observed because of a cold bias in simulated surface air temperatures over sea ice.
Key Points
First integrated pan‐Arctic melt onset data set
First map of melt progression rate
Unique data set for GCM validation</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2011JD016256</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0148-0227 |
ispartof | Journal of Geophysical Research: Atmospheres, 2011-11, Vol.116 (D22), p.n/a |
issn | 0148-0227 2156-2202 |
language | eng |
recordid | cdi_pascalfrancis_primary_25340357 |
source | Wiley Online Library AGU 2017 |
subjects | active microwave cryosphere Earth sciences Earth, ocean, space Exact sciences and technology melt onset pan-Arctic passive microwave |
title | Integrated pan-Arctic melt onset detection from satellite active and passive microwave measurements, 2000-2009 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T03%3A31%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrated%20pan-Arctic%20melt%20onset%20detection%20from%20satellite%20active%20and%20passive%20microwave%20measurements,%202000-2009&rft.jtitle=Journal%20of%20Geophysical%20Research:%20Atmospheres&rft.au=Wang,%20L.&rft.date=2011-11-27&rft.volume=116&rft.issue=D22&rft.epage=n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2011JD016256&rft_dat=%3Cistex_pasca%3Eark_67375_WNG_5JNJPKQQ_V%3C/istex_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3487-41556f7358069be7da129868cfed6de5af45c52f15db08a66a03bdc101c562963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |