Loading…
Inference under Heteroscedasticity of Unknown Form Using an Adaptive Estimator
The heteroscedasticity consistent covariance matrix estimators are commonly used for the testing of regression coefficients when error terms of regression model are heteroscedastic. These estimators are based on the residuals obtained from the method of ordinary least squares and this method yields...
Saved in:
Published in: | Communications in statistics. Theory and methods 2011-12, Vol.40 (24), p.4431-4457 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c370t-a4f190fcfc4da0a5258f59f84da6e34f3a0b4f5a5813b2bfffefe34b2189bc913 |
---|---|
cites | cdi_FETCH-LOGICAL-c370t-a4f190fcfc4da0a5258f59f84da6e34f3a0b4f5a5813b2bfffefe34b2189bc913 |
container_end_page | 4457 |
container_issue | 24 |
container_start_page | 4431 |
container_title | Communications in statistics. Theory and methods |
container_volume | 40 |
creator | Ahmed, Munir Aslam, Muhammad Pasha, G. R. |
description | The heteroscedasticity consistent covariance matrix estimators are commonly used for the testing of regression coefficients when error terms of regression model are heteroscedastic. These estimators are based on the residuals obtained from the method of ordinary least squares and this method yields inefficient estimators in the presence of heteroscedasticity. It is usual practice to use estimated weighted least squares method or some adaptive methods to find efficient estimates of the regression parameters when the form of heteroscedasticity is unknown. But HCCM estimators are seldom derived from such efficient estimators for testing purposes in the available literature. The current article addresses the same concern and presents the weighted versions of HCCM estimators. Our numerical work uncovers the performance of these estimators and their finite sample properties in terms of interval estimation and null rejection rate. |
doi_str_mv | 10.1080/03610926.2010.513793 |
format | article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_25362766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1010878861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-a4f190fcfc4da0a5258f59f84da6e34f3a0b4f5a5813b2bfffefe34b2189bc913</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwDxi8ILGk-CNOnAlVVUsrVbBQiS1yHB8KpHaxU6r-exylMDKdfHreu_OD0C0lE0okeSA8o6Rg2YSR2BKU5wU_QyMqOEtSKt7O0ahHkp65RFchfBBCRS75CD2vLBhvrDZ4b2vj8dJ0xrugTa1C1-imO2IHeGM_rTtYvHB-izehse9YWTyt1a5rvg2eR3SrOuev0QWoNpibUx2jzWL-Olsm65en1Wy6TjTPSZeoFGhBQINOa0WUYEKCKEDGV2Z4ClyRKgWhhKS8YhUAGIj9ilFZVLqgfIzuh7k77772JnTltok3t62yxu1DSaMImUuZ9Wg6oDp-K3gD5c7HY_0xQmWvr_zVV_b6ykFfjN2dNqigVQteWd2EvywTPGN5lkXuceAaC1GOOjjf1mWnjq3zvyH-76YfNzWEYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1010878861</pqid></control><display><type>article</type><title>Inference under Heteroscedasticity of Unknown Form Using an Adaptive Estimator</title><source>Taylor and Francis Science and Technology Collection</source><creator>Ahmed, Munir ; Aslam, Muhammad ; Pasha, G. R.</creator><creatorcontrib>Ahmed, Munir ; Aslam, Muhammad ; Pasha, G. R.</creatorcontrib><description>The heteroscedasticity consistent covariance matrix estimators are commonly used for the testing of regression coefficients when error terms of regression model are heteroscedastic. These estimators are based on the residuals obtained from the method of ordinary least squares and this method yields inefficient estimators in the presence of heteroscedasticity. It is usual practice to use estimated weighted least squares method or some adaptive methods to find efficient estimates of the regression parameters when the form of heteroscedasticity is unknown. But HCCM estimators are seldom derived from such efficient estimators for testing purposes in the available literature. The current article addresses the same concern and presents the weighted versions of HCCM estimators. Our numerical work uncovers the performance of these estimators and their finite sample properties in terms of interval estimation and null rejection rate.</description><identifier>ISSN: 0361-0926</identifier><identifier>EISSN: 1532-415X</identifier><identifier>DOI: 10.1080/03610926.2010.513793</identifier><identifier>CODEN: CSTMDC</identifier><language>eng</language><publisher>Philadelphia, PA: Taylor & Francis Group</publisher><subject>Adaptive estimator ; Estimated weighted least squares ; Estimators ; Exact sciences and technology ; General topics ; Global analysis, analysis on manifolds ; HCCME ; Heteroscedasticity-consistent interval estimator ; Kernel weighted least squares ; Least squares method ; Linear inference, regression ; Mathematical analysis ; Mathematical models ; Mathematics ; Null rejection rate ; Parametric inference ; Probability and statistics ; Regression ; Samples ; Sciences and techniques of general use ; Size distortion ; Statistical analysis ; Statistics ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><ispartof>Communications in statistics. Theory and methods, 2011-12, Vol.40 (24), p.4431-4457</ispartof><rights>Copyright Taylor & Francis Group, LLC 2011</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-a4f190fcfc4da0a5258f59f84da6e34f3a0b4f5a5813b2bfffefe34b2189bc913</citedby><cites>FETCH-LOGICAL-c370t-a4f190fcfc4da0a5258f59f84da6e34f3a0b4f5a5813b2bfffefe34b2189bc913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25362766$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ahmed, Munir</creatorcontrib><creatorcontrib>Aslam, Muhammad</creatorcontrib><creatorcontrib>Pasha, G. R.</creatorcontrib><title>Inference under Heteroscedasticity of Unknown Form Using an Adaptive Estimator</title><title>Communications in statistics. Theory and methods</title><description>The heteroscedasticity consistent covariance matrix estimators are commonly used for the testing of regression coefficients when error terms of regression model are heteroscedastic. These estimators are based on the residuals obtained from the method of ordinary least squares and this method yields inefficient estimators in the presence of heteroscedasticity. It is usual practice to use estimated weighted least squares method or some adaptive methods to find efficient estimates of the regression parameters when the form of heteroscedasticity is unknown. But HCCM estimators are seldom derived from such efficient estimators for testing purposes in the available literature. The current article addresses the same concern and presents the weighted versions of HCCM estimators. Our numerical work uncovers the performance of these estimators and their finite sample properties in terms of interval estimation and null rejection rate.</description><subject>Adaptive estimator</subject><subject>Estimated weighted least squares</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>General topics</subject><subject>Global analysis, analysis on manifolds</subject><subject>HCCME</subject><subject>Heteroscedasticity-consistent interval estimator</subject><subject>Kernel weighted least squares</subject><subject>Least squares method</subject><subject>Linear inference, regression</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Null rejection rate</subject><subject>Parametric inference</subject><subject>Probability and statistics</subject><subject>Regression</subject><subject>Samples</subject><subject>Sciences and techniques of general use</subject><subject>Size distortion</subject><subject>Statistical analysis</subject><subject>Statistics</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><issn>0361-0926</issn><issn>1532-415X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwDxi8ILGk-CNOnAlVVUsrVbBQiS1yHB8KpHaxU6r-exylMDKdfHreu_OD0C0lE0okeSA8o6Rg2YSR2BKU5wU_QyMqOEtSKt7O0ahHkp65RFchfBBCRS75CD2vLBhvrDZ4b2vj8dJ0xrugTa1C1-imO2IHeGM_rTtYvHB-izehse9YWTyt1a5rvg2eR3SrOuev0QWoNpibUx2jzWL-Olsm65en1Wy6TjTPSZeoFGhBQINOa0WUYEKCKEDGV2Z4ClyRKgWhhKS8YhUAGIj9ilFZVLqgfIzuh7k77772JnTltok3t62yxu1DSaMImUuZ9Wg6oDp-K3gD5c7HY_0xQmWvr_zVV_b6ykFfjN2dNqigVQteWd2EvywTPGN5lkXuceAaC1GOOjjf1mWnjq3zvyH-76YfNzWEYw</recordid><startdate>20111215</startdate><enddate>20111215</enddate><creator>Ahmed, Munir</creator><creator>Aslam, Muhammad</creator><creator>Pasha, G. R.</creator><general>Taylor & Francis Group</general><general>Taylor & Francis</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20111215</creationdate><title>Inference under Heteroscedasticity of Unknown Form Using an Adaptive Estimator</title><author>Ahmed, Munir ; Aslam, Muhammad ; Pasha, G. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-a4f190fcfc4da0a5258f59f84da6e34f3a0b4f5a5813b2bfffefe34b2189bc913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adaptive estimator</topic><topic>Estimated weighted least squares</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>General topics</topic><topic>Global analysis, analysis on manifolds</topic><topic>HCCME</topic><topic>Heteroscedasticity-consistent interval estimator</topic><topic>Kernel weighted least squares</topic><topic>Least squares method</topic><topic>Linear inference, regression</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Null rejection rate</topic><topic>Parametric inference</topic><topic>Probability and statistics</topic><topic>Regression</topic><topic>Samples</topic><topic>Sciences and techniques of general use</topic><topic>Size distortion</topic><topic>Statistical analysis</topic><topic>Statistics</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmed, Munir</creatorcontrib><creatorcontrib>Aslam, Muhammad</creatorcontrib><creatorcontrib>Pasha, G. R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Communications in statistics. Theory and methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmed, Munir</au><au>Aslam, Muhammad</au><au>Pasha, G. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inference under Heteroscedasticity of Unknown Form Using an Adaptive Estimator</atitle><jtitle>Communications in statistics. Theory and methods</jtitle><date>2011-12-15</date><risdate>2011</risdate><volume>40</volume><issue>24</issue><spage>4431</spage><epage>4457</epage><pages>4431-4457</pages><issn>0361-0926</issn><eissn>1532-415X</eissn><coden>CSTMDC</coden><abstract>The heteroscedasticity consistent covariance matrix estimators are commonly used for the testing of regression coefficients when error terms of regression model are heteroscedastic. These estimators are based on the residuals obtained from the method of ordinary least squares and this method yields inefficient estimators in the presence of heteroscedasticity. It is usual practice to use estimated weighted least squares method or some adaptive methods to find efficient estimates of the regression parameters when the form of heteroscedasticity is unknown. But HCCM estimators are seldom derived from such efficient estimators for testing purposes in the available literature. The current article addresses the same concern and presents the weighted versions of HCCM estimators. Our numerical work uncovers the performance of these estimators and their finite sample properties in terms of interval estimation and null rejection rate.</abstract><cop>Philadelphia, PA</cop><pub>Taylor & Francis Group</pub><doi>10.1080/03610926.2010.513793</doi><tpages>27</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-0926 |
ispartof | Communications in statistics. Theory and methods, 2011-12, Vol.40 (24), p.4431-4457 |
issn | 0361-0926 1532-415X |
language | eng |
recordid | cdi_pascalfrancis_primary_25362766 |
source | Taylor and Francis Science and Technology Collection |
subjects | Adaptive estimator Estimated weighted least squares Estimators Exact sciences and technology General topics Global analysis, analysis on manifolds HCCME Heteroscedasticity-consistent interval estimator Kernel weighted least squares Least squares method Linear inference, regression Mathematical analysis Mathematical models Mathematics Null rejection rate Parametric inference Probability and statistics Regression Samples Sciences and techniques of general use Size distortion Statistical analysis Statistics Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds |
title | Inference under Heteroscedasticity of Unknown Form Using an Adaptive Estimator |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A24%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inference%20under%20Heteroscedasticity%20of%20Unknown%20Form%20Using%20an%20Adaptive%20Estimator&rft.jtitle=Communications%20in%20statistics.%20Theory%20and%20methods&rft.au=Ahmed,%20Munir&rft.date=2011-12-15&rft.volume=40&rft.issue=24&rft.spage=4431&rft.epage=4457&rft.pages=4431-4457&rft.issn=0361-0926&rft.eissn=1532-415X&rft.coden=CSTMDC&rft_id=info:doi/10.1080/03610926.2010.513793&rft_dat=%3Cproquest_pasca%3E1010878861%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c370t-a4f190fcfc4da0a5258f59f84da6e34f3a0b4f5a5813b2bfffefe34b2189bc913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1010878861&rft_id=info:pmid/&rfr_iscdi=true |