Loading…

Inference under Heteroscedasticity of Unknown Form Using an Adaptive Estimator

The heteroscedasticity consistent covariance matrix estimators are commonly used for the testing of regression coefficients when error terms of regression model are heteroscedastic. These estimators are based on the residuals obtained from the method of ordinary least squares and this method yields...

Full description

Saved in:
Bibliographic Details
Published in:Communications in statistics. Theory and methods 2011-12, Vol.40 (24), p.4431-4457
Main Authors: Ahmed, Munir, Aslam, Muhammad, Pasha, G. R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c370t-a4f190fcfc4da0a5258f59f84da6e34f3a0b4f5a5813b2bfffefe34b2189bc913
cites cdi_FETCH-LOGICAL-c370t-a4f190fcfc4da0a5258f59f84da6e34f3a0b4f5a5813b2bfffefe34b2189bc913
container_end_page 4457
container_issue 24
container_start_page 4431
container_title Communications in statistics. Theory and methods
container_volume 40
creator Ahmed, Munir
Aslam, Muhammad
Pasha, G. R.
description The heteroscedasticity consistent covariance matrix estimators are commonly used for the testing of regression coefficients when error terms of regression model are heteroscedastic. These estimators are based on the residuals obtained from the method of ordinary least squares and this method yields inefficient estimators in the presence of heteroscedasticity. It is usual practice to use estimated weighted least squares method or some adaptive methods to find efficient estimates of the regression parameters when the form of heteroscedasticity is unknown. But HCCM estimators are seldom derived from such efficient estimators for testing purposes in the available literature. The current article addresses the same concern and presents the weighted versions of HCCM estimators. Our numerical work uncovers the performance of these estimators and their finite sample properties in terms of interval estimation and null rejection rate.
doi_str_mv 10.1080/03610926.2010.513793
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_25362766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1010878861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-a4f190fcfc4da0a5258f59f84da6e34f3a0b4f5a5813b2bfffefe34b2189bc913</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwDxi8ILGk-CNOnAlVVUsrVbBQiS1yHB8KpHaxU6r-exylMDKdfHreu_OD0C0lE0okeSA8o6Rg2YSR2BKU5wU_QyMqOEtSKt7O0ahHkp65RFchfBBCRS75CD2vLBhvrDZ4b2vj8dJ0xrugTa1C1-imO2IHeGM_rTtYvHB-izehse9YWTyt1a5rvg2eR3SrOuev0QWoNpibUx2jzWL-Olsm65en1Wy6TjTPSZeoFGhBQINOa0WUYEKCKEDGV2Z4ClyRKgWhhKS8YhUAGIj9ilFZVLqgfIzuh7k77772JnTltok3t62yxu1DSaMImUuZ9Wg6oDp-K3gD5c7HY_0xQmWvr_zVV_b6ykFfjN2dNqigVQteWd2EvywTPGN5lkXuceAaC1GOOjjf1mWnjq3zvyH-76YfNzWEYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1010878861</pqid></control><display><type>article</type><title>Inference under Heteroscedasticity of Unknown Form Using an Adaptive Estimator</title><source>Taylor and Francis Science and Technology Collection</source><creator>Ahmed, Munir ; Aslam, Muhammad ; Pasha, G. R.</creator><creatorcontrib>Ahmed, Munir ; Aslam, Muhammad ; Pasha, G. R.</creatorcontrib><description>The heteroscedasticity consistent covariance matrix estimators are commonly used for the testing of regression coefficients when error terms of regression model are heteroscedastic. These estimators are based on the residuals obtained from the method of ordinary least squares and this method yields inefficient estimators in the presence of heteroscedasticity. It is usual practice to use estimated weighted least squares method or some adaptive methods to find efficient estimates of the regression parameters when the form of heteroscedasticity is unknown. But HCCM estimators are seldom derived from such efficient estimators for testing purposes in the available literature. The current article addresses the same concern and presents the weighted versions of HCCM estimators. Our numerical work uncovers the performance of these estimators and their finite sample properties in terms of interval estimation and null rejection rate.</description><identifier>ISSN: 0361-0926</identifier><identifier>EISSN: 1532-415X</identifier><identifier>DOI: 10.1080/03610926.2010.513793</identifier><identifier>CODEN: CSTMDC</identifier><language>eng</language><publisher>Philadelphia, PA: Taylor &amp; Francis Group</publisher><subject>Adaptive estimator ; Estimated weighted least squares ; Estimators ; Exact sciences and technology ; General topics ; Global analysis, analysis on manifolds ; HCCME ; Heteroscedasticity-consistent interval estimator ; Kernel weighted least squares ; Least squares method ; Linear inference, regression ; Mathematical analysis ; Mathematical models ; Mathematics ; Null rejection rate ; Parametric inference ; Probability and statistics ; Regression ; Samples ; Sciences and techniques of general use ; Size distortion ; Statistical analysis ; Statistics ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><ispartof>Communications in statistics. Theory and methods, 2011-12, Vol.40 (24), p.4431-4457</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2011</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-a4f190fcfc4da0a5258f59f84da6e34f3a0b4f5a5813b2bfffefe34b2189bc913</citedby><cites>FETCH-LOGICAL-c370t-a4f190fcfc4da0a5258f59f84da6e34f3a0b4f5a5813b2bfffefe34b2189bc913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25362766$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ahmed, Munir</creatorcontrib><creatorcontrib>Aslam, Muhammad</creatorcontrib><creatorcontrib>Pasha, G. R.</creatorcontrib><title>Inference under Heteroscedasticity of Unknown Form Using an Adaptive Estimator</title><title>Communications in statistics. Theory and methods</title><description>The heteroscedasticity consistent covariance matrix estimators are commonly used for the testing of regression coefficients when error terms of regression model are heteroscedastic. These estimators are based on the residuals obtained from the method of ordinary least squares and this method yields inefficient estimators in the presence of heteroscedasticity. It is usual practice to use estimated weighted least squares method or some adaptive methods to find efficient estimates of the regression parameters when the form of heteroscedasticity is unknown. But HCCM estimators are seldom derived from such efficient estimators for testing purposes in the available literature. The current article addresses the same concern and presents the weighted versions of HCCM estimators. Our numerical work uncovers the performance of these estimators and their finite sample properties in terms of interval estimation and null rejection rate.</description><subject>Adaptive estimator</subject><subject>Estimated weighted least squares</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>General topics</subject><subject>Global analysis, analysis on manifolds</subject><subject>HCCME</subject><subject>Heteroscedasticity-consistent interval estimator</subject><subject>Kernel weighted least squares</subject><subject>Least squares method</subject><subject>Linear inference, regression</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Null rejection rate</subject><subject>Parametric inference</subject><subject>Probability and statistics</subject><subject>Regression</subject><subject>Samples</subject><subject>Sciences and techniques of general use</subject><subject>Size distortion</subject><subject>Statistical analysis</subject><subject>Statistics</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><issn>0361-0926</issn><issn>1532-415X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwDxi8ILGk-CNOnAlVVUsrVbBQiS1yHB8KpHaxU6r-exylMDKdfHreu_OD0C0lE0okeSA8o6Rg2YSR2BKU5wU_QyMqOEtSKt7O0ahHkp65RFchfBBCRS75CD2vLBhvrDZ4b2vj8dJ0xrugTa1C1-imO2IHeGM_rTtYvHB-izehse9YWTyt1a5rvg2eR3SrOuev0QWoNpibUx2jzWL-Olsm65en1Wy6TjTPSZeoFGhBQINOa0WUYEKCKEDGV2Z4ClyRKgWhhKS8YhUAGIj9ilFZVLqgfIzuh7k77772JnTltok3t62yxu1DSaMImUuZ9Wg6oDp-K3gD5c7HY_0xQmWvr_zVV_b6ykFfjN2dNqigVQteWd2EvywTPGN5lkXuceAaC1GOOjjf1mWnjq3zvyH-76YfNzWEYw</recordid><startdate>20111215</startdate><enddate>20111215</enddate><creator>Ahmed, Munir</creator><creator>Aslam, Muhammad</creator><creator>Pasha, G. R.</creator><general>Taylor &amp; Francis Group</general><general>Taylor &amp; Francis</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20111215</creationdate><title>Inference under Heteroscedasticity of Unknown Form Using an Adaptive Estimator</title><author>Ahmed, Munir ; Aslam, Muhammad ; Pasha, G. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-a4f190fcfc4da0a5258f59f84da6e34f3a0b4f5a5813b2bfffefe34b2189bc913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adaptive estimator</topic><topic>Estimated weighted least squares</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>General topics</topic><topic>Global analysis, analysis on manifolds</topic><topic>HCCME</topic><topic>Heteroscedasticity-consistent interval estimator</topic><topic>Kernel weighted least squares</topic><topic>Least squares method</topic><topic>Linear inference, regression</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Null rejection rate</topic><topic>Parametric inference</topic><topic>Probability and statistics</topic><topic>Regression</topic><topic>Samples</topic><topic>Sciences and techniques of general use</topic><topic>Size distortion</topic><topic>Statistical analysis</topic><topic>Statistics</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmed, Munir</creatorcontrib><creatorcontrib>Aslam, Muhammad</creatorcontrib><creatorcontrib>Pasha, G. R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Communications in statistics. Theory and methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmed, Munir</au><au>Aslam, Muhammad</au><au>Pasha, G. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inference under Heteroscedasticity of Unknown Form Using an Adaptive Estimator</atitle><jtitle>Communications in statistics. Theory and methods</jtitle><date>2011-12-15</date><risdate>2011</risdate><volume>40</volume><issue>24</issue><spage>4431</spage><epage>4457</epage><pages>4431-4457</pages><issn>0361-0926</issn><eissn>1532-415X</eissn><coden>CSTMDC</coden><abstract>The heteroscedasticity consistent covariance matrix estimators are commonly used for the testing of regression coefficients when error terms of regression model are heteroscedastic. These estimators are based on the residuals obtained from the method of ordinary least squares and this method yields inefficient estimators in the presence of heteroscedasticity. It is usual practice to use estimated weighted least squares method or some adaptive methods to find efficient estimates of the regression parameters when the form of heteroscedasticity is unknown. But HCCM estimators are seldom derived from such efficient estimators for testing purposes in the available literature. The current article addresses the same concern and presents the weighted versions of HCCM estimators. Our numerical work uncovers the performance of these estimators and their finite sample properties in terms of interval estimation and null rejection rate.</abstract><cop>Philadelphia, PA</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/03610926.2010.513793</doi><tpages>27</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-0926
ispartof Communications in statistics. Theory and methods, 2011-12, Vol.40 (24), p.4431-4457
issn 0361-0926
1532-415X
language eng
recordid cdi_pascalfrancis_primary_25362766
source Taylor and Francis Science and Technology Collection
subjects Adaptive estimator
Estimated weighted least squares
Estimators
Exact sciences and technology
General topics
Global analysis, analysis on manifolds
HCCME
Heteroscedasticity-consistent interval estimator
Kernel weighted least squares
Least squares method
Linear inference, regression
Mathematical analysis
Mathematical models
Mathematics
Null rejection rate
Parametric inference
Probability and statistics
Regression
Samples
Sciences and techniques of general use
Size distortion
Statistical analysis
Statistics
Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds
title Inference under Heteroscedasticity of Unknown Form Using an Adaptive Estimator
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A24%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inference%20under%20Heteroscedasticity%20of%20Unknown%20Form%20Using%20an%20Adaptive%20Estimator&rft.jtitle=Communications%20in%20statistics.%20Theory%20and%20methods&rft.au=Ahmed,%20Munir&rft.date=2011-12-15&rft.volume=40&rft.issue=24&rft.spage=4431&rft.epage=4457&rft.pages=4431-4457&rft.issn=0361-0926&rft.eissn=1532-415X&rft.coden=CSTMDC&rft_id=info:doi/10.1080/03610926.2010.513793&rft_dat=%3Cproquest_pasca%3E1010878861%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c370t-a4f190fcfc4da0a5258f59f84da6e34f3a0b4f5a5813b2bfffefe34b2189bc913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1010878861&rft_id=info:pmid/&rfr_iscdi=true