Loading…

Biodegradation of nicosulfuron by the bacterium Serratia marcescens N80

By enrichment culturing of the sludge collected from the industrial wastewater treatment pond, we isolated a highly efficient nicosulfuron degrading bacterium Serratia marcescens N80. In liquid medium, Serratia marcescens N80 grows using nicosulfuron as the sole nitrogen source, and the optimal temp...

Full description

Saved in:
Bibliographic Details
Published in:Journal of environmental science and health. Part B, Pesticides, food contaminants, and agricultural wastes Pesticides, food contaminants, and agricultural wastes, 2012-03, Vol.47 (3), p.153-160
Main Authors: Zhang, Hao, Mu, Wenhui, Hou, Zhiguang, Wu, Xian, Zhao, Weiwei, Zhang, Xianghui, Pan, Hongyu, Zhang, Shihong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c476t-4e3428e96fc77807ca730a3ea8fd99dd173902f76fa2213241c5197bb431c1e3
cites cdi_FETCH-LOGICAL-c476t-4e3428e96fc77807ca730a3ea8fd99dd173902f76fa2213241c5197bb431c1e3
container_end_page 160
container_issue 3
container_start_page 153
container_title Journal of environmental science and health. Part B, Pesticides, food contaminants, and agricultural wastes
container_volume 47
creator Zhang, Hao
Mu, Wenhui
Hou, Zhiguang
Wu, Xian
Zhao, Weiwei
Zhang, Xianghui
Pan, Hongyu
Zhang, Shihong
description By enrichment culturing of the sludge collected from the industrial wastewater treatment pond, we isolated a highly efficient nicosulfuron degrading bacterium Serratia marcescens N80. In liquid medium, Serratia marcescens N80 grows using nicosulfuron as the sole nitrogen source, and the optimal temperature, pH values, and inoculation for degradation are 30–35°C, 6.0–7.0, and 3.0% (v/v), respectively. With the initial concentration of 10 mg L⁻¹, the degradation rate is 93.6% in 96 hours; as the initial concentrations are higher than 10 mg L⁻¹, the biodegradation rates decrease as the nicosulfuron concentrations increase; when the concentration is 400 mg L⁻¹, the degradation rate is only 53.1%. Degradation follows the pesticide degradation kinetic equation at concentrations between 5 mg L⁻¹ and 50 mg L⁻¹. Identification of the metabolites by the liquid chromatography/mass spectrometry (LC/MS) indicates that the degradation of nicosulfuron is achieved by breaking the sulfonylurea bridge. The strain N80 also degraded some other sulfonylurea herbicides, including ethametsulfuron, tribenuron-methyl, metsulfuron-methyl, chlorimuron-ethyl,and rimsulfuron.
doi_str_mv 10.1080/03601234.2012.632249
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_25651343</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2605646821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-4e3428e96fc77807ca730a3ea8fd99dd173902f76fa2213241c5197bb431c1e3</originalsourceid><addsrcrecordid>eNqFkk9rFTEUxYMotla_geggFN28Z27-TlZii9ZC0UXrOtzJJHXKzKRNZpD37ZvHvGfFhV3dBH7ncHNOCHkNdA20ph8pVxQYF2tWxlpxxoR5Qg5BcrYSQM3Tv84H5EXON5RCzUE9JweMcS1lrQ7J2UkXW3-dsMWpi2MVQzV2Lua5D3Mq92ZTTb981aCbfOrmobr0KRUUqwGT89n5MVffa_qSPAvYZ_9qN4_I1dcvV6ffVhc_zs5PP1-snNBqWgnPBau9UcFpXVPtUHOK3GMdWmPaFjQ3lAWtAjIGnAlwEoxuGsHBgedH5P1ie5vi3ezzZIeu7ND3OPo4Z2uYAllSMYX88F8SKJRkCqwL-u4f9CbOaSzP2PoZThWjBRIL5FLMOflgb1NXMtgUJ7stxO4LsdtC7FJIkb3Zec_N4Ns_on0DBTjeAZgd9iHh6Lr8wEklgQteuE8L140hpgF_x9S3dsJNH9NexB9Z5e3iEDBavE5F8POyAGL7L0BKxu8BDUWs7A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>926930620</pqid></control><display><type>article</type><title>Biodegradation of nicosulfuron by the bacterium Serratia marcescens N80</title><source>Taylor and Francis Science and Technology Collection</source><creator>Zhang, Hao ; Mu, Wenhui ; Hou, Zhiguang ; Wu, Xian ; Zhao, Weiwei ; Zhang, Xianghui ; Pan, Hongyu ; Zhang, Shihong</creator><creatorcontrib>Zhang, Hao ; Mu, Wenhui ; Hou, Zhiguang ; Wu, Xian ; Zhao, Weiwei ; Zhang, Xianghui ; Pan, Hongyu ; Zhang, Shihong</creatorcontrib><description>By enrichment culturing of the sludge collected from the industrial wastewater treatment pond, we isolated a highly efficient nicosulfuron degrading bacterium Serratia marcescens N80. In liquid medium, Serratia marcescens N80 grows using nicosulfuron as the sole nitrogen source, and the optimal temperature, pH values, and inoculation for degradation are 30–35°C, 6.0–7.0, and 3.0% (v/v), respectively. With the initial concentration of 10 mg L⁻¹, the degradation rate is 93.6% in 96 hours; as the initial concentrations are higher than 10 mg L⁻¹, the biodegradation rates decrease as the nicosulfuron concentrations increase; when the concentration is 400 mg L⁻¹, the degradation rate is only 53.1%. Degradation follows the pesticide degradation kinetic equation at concentrations between 5 mg L⁻¹ and 50 mg L⁻¹. Identification of the metabolites by the liquid chromatography/mass spectrometry (LC/MS) indicates that the degradation of nicosulfuron is achieved by breaking the sulfonylurea bridge. The strain N80 also degraded some other sulfonylurea herbicides, including ethametsulfuron, tribenuron-methyl, metsulfuron-methyl, chlorimuron-ethyl,and rimsulfuron.</description><identifier>ISSN: 1532-4109</identifier><identifier>ISSN: 0360-1234</identifier><identifier>EISSN: 1532-4109</identifier><identifier>DOI: 10.1080/03601234.2012.632249</identifier><identifier>PMID: 22375586</identifier><identifier>CODEN: JPFCD2</identifier><language>eng</language><publisher>Philadelphia, PA: Taylor &amp; Francis Group</publisher><subject>16S rDNA ; Agronomy. Soil science and plant productions ; Animal, plant and microbial ecology ; Applied ecology ; Bacteria ; Base Sequence ; Biodegradation ; Biodegradation, Environmental ; Biological and medical sciences ; Chromatography, Liquid ; DNA, Bacterial ; equations ; Fundamental and applied biological sciences. Psychology ; Generalities. Genetics. Plant material ; Genetics and breeding of economic plants ; Herbicides - metabolism ; Hydrogen-Ion Concentration ; liquid chromatography ; Mass Spectrometry ; Metabolites ; metsulfuron ; Molecular Sequence Data ; nicosulfuron ; nitrogen ; Origin, evolution, domestication ; Parasitic plants. Weeds ; phylogenetic analysis ; Phylogeny ; Phytopathology. Animal pests. Plant and forest protection ; Plant material ; Polymerase Chain Reaction ; Pyridines - metabolism ; rimsulfuron ; RNA, Ribosomal, 16S ; Sequence Analysis, DNA ; Serratia marcescens ; Serratia marcescens - classification ; Serratia marcescens - genetics ; Serratia marcescens - isolation &amp; purification ; Serratia marcescens - metabolism ; Sewage - microbiology ; Sludge ; Sulfonylurea Compounds - metabolism ; Temperature ; wastewater treatment ; Water treatment ; Weeds</subject><ispartof>Journal of environmental science and health. Part B, Pesticides, food contaminants, and agricultural wastes, 2012-03, Vol.47 (3), p.153-160</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2012</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Taylor &amp; Francis Ltd. 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-4e3428e96fc77807ca730a3ea8fd99dd173902f76fa2213241c5197bb431c1e3</citedby><cites>FETCH-LOGICAL-c476t-4e3428e96fc77807ca730a3ea8fd99dd173902f76fa2213241c5197bb431c1e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25651343$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22375586$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Mu, Wenhui</creatorcontrib><creatorcontrib>Hou, Zhiguang</creatorcontrib><creatorcontrib>Wu, Xian</creatorcontrib><creatorcontrib>Zhao, Weiwei</creatorcontrib><creatorcontrib>Zhang, Xianghui</creatorcontrib><creatorcontrib>Pan, Hongyu</creatorcontrib><creatorcontrib>Zhang, Shihong</creatorcontrib><title>Biodegradation of nicosulfuron by the bacterium Serratia marcescens N80</title><title>Journal of environmental science and health. Part B, Pesticides, food contaminants, and agricultural wastes</title><addtitle>J Environ Sci Health B</addtitle><description>By enrichment culturing of the sludge collected from the industrial wastewater treatment pond, we isolated a highly efficient nicosulfuron degrading bacterium Serratia marcescens N80. In liquid medium, Serratia marcescens N80 grows using nicosulfuron as the sole nitrogen source, and the optimal temperature, pH values, and inoculation for degradation are 30–35°C, 6.0–7.0, and 3.0% (v/v), respectively. With the initial concentration of 10 mg L⁻¹, the degradation rate is 93.6% in 96 hours; as the initial concentrations are higher than 10 mg L⁻¹, the biodegradation rates decrease as the nicosulfuron concentrations increase; when the concentration is 400 mg L⁻¹, the degradation rate is only 53.1%. Degradation follows the pesticide degradation kinetic equation at concentrations between 5 mg L⁻¹ and 50 mg L⁻¹. Identification of the metabolites by the liquid chromatography/mass spectrometry (LC/MS) indicates that the degradation of nicosulfuron is achieved by breaking the sulfonylurea bridge. The strain N80 also degraded some other sulfonylurea herbicides, including ethametsulfuron, tribenuron-methyl, metsulfuron-methyl, chlorimuron-ethyl,and rimsulfuron.</description><subject>16S rDNA</subject><subject>Agronomy. Soil science and plant productions</subject><subject>Animal, plant and microbial ecology</subject><subject>Applied ecology</subject><subject>Bacteria</subject><subject>Base Sequence</subject><subject>Biodegradation</subject><subject>Biodegradation, Environmental</subject><subject>Biological and medical sciences</subject><subject>Chromatography, Liquid</subject><subject>DNA, Bacterial</subject><subject>equations</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Generalities. Genetics. Plant material</subject><subject>Genetics and breeding of economic plants</subject><subject>Herbicides - metabolism</subject><subject>Hydrogen-Ion Concentration</subject><subject>liquid chromatography</subject><subject>Mass Spectrometry</subject><subject>Metabolites</subject><subject>metsulfuron</subject><subject>Molecular Sequence Data</subject><subject>nicosulfuron</subject><subject>nitrogen</subject><subject>Origin, evolution, domestication</subject><subject>Parasitic plants. Weeds</subject><subject>phylogenetic analysis</subject><subject>Phylogeny</subject><subject>Phytopathology. Animal pests. Plant and forest protection</subject><subject>Plant material</subject><subject>Polymerase Chain Reaction</subject><subject>Pyridines - metabolism</subject><subject>rimsulfuron</subject><subject>RNA, Ribosomal, 16S</subject><subject>Sequence Analysis, DNA</subject><subject>Serratia marcescens</subject><subject>Serratia marcescens - classification</subject><subject>Serratia marcescens - genetics</subject><subject>Serratia marcescens - isolation &amp; purification</subject><subject>Serratia marcescens - metabolism</subject><subject>Sewage - microbiology</subject><subject>Sludge</subject><subject>Sulfonylurea Compounds - metabolism</subject><subject>Temperature</subject><subject>wastewater treatment</subject><subject>Water treatment</subject><subject>Weeds</subject><issn>1532-4109</issn><issn>0360-1234</issn><issn>1532-4109</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkk9rFTEUxYMotla_geggFN28Z27-TlZii9ZC0UXrOtzJJHXKzKRNZpD37ZvHvGfFhV3dBH7ncHNOCHkNdA20ph8pVxQYF2tWxlpxxoR5Qg5BcrYSQM3Tv84H5EXON5RCzUE9JweMcS1lrQ7J2UkXW3-dsMWpi2MVQzV2Lua5D3Mq92ZTTb981aCbfOrmobr0KRUUqwGT89n5MVffa_qSPAvYZ_9qN4_I1dcvV6ffVhc_zs5PP1-snNBqWgnPBau9UcFpXVPtUHOK3GMdWmPaFjQ3lAWtAjIGnAlwEoxuGsHBgedH5P1ie5vi3ezzZIeu7ND3OPo4Z2uYAllSMYX88F8SKJRkCqwL-u4f9CbOaSzP2PoZThWjBRIL5FLMOflgb1NXMtgUJ7stxO4LsdtC7FJIkb3Zec_N4Ns_on0DBTjeAZgd9iHh6Lr8wEklgQteuE8L140hpgF_x9S3dsJNH9NexB9Z5e3iEDBavE5F8POyAGL7L0BKxu8BDUWs7A</recordid><startdate>201203</startdate><enddate>201203</enddate><creator>Zhang, Hao</creator><creator>Mu, Wenhui</creator><creator>Hou, Zhiguang</creator><creator>Wu, Xian</creator><creator>Zhao, Weiwei</creator><creator>Zhang, Xianghui</creator><creator>Pan, Hongyu</creator><creator>Zhang, Shihong</creator><general>Taylor &amp; Francis Group</general><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7QH</scope><scope>7QO</scope><scope>7UA</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>7X8</scope></search><sort><creationdate>201203</creationdate><title>Biodegradation of nicosulfuron by the bacterium Serratia marcescens N80</title><author>Zhang, Hao ; Mu, Wenhui ; Hou, Zhiguang ; Wu, Xian ; Zhao, Weiwei ; Zhang, Xianghui ; Pan, Hongyu ; Zhang, Shihong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-4e3428e96fc77807ca730a3ea8fd99dd173902f76fa2213241c5197bb431c1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>16S rDNA</topic><topic>Agronomy. Soil science and plant productions</topic><topic>Animal, plant and microbial ecology</topic><topic>Applied ecology</topic><topic>Bacteria</topic><topic>Base Sequence</topic><topic>Biodegradation</topic><topic>Biodegradation, Environmental</topic><topic>Biological and medical sciences</topic><topic>Chromatography, Liquid</topic><topic>DNA, Bacterial</topic><topic>equations</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Generalities. Genetics. Plant material</topic><topic>Genetics and breeding of economic plants</topic><topic>Herbicides - metabolism</topic><topic>Hydrogen-Ion Concentration</topic><topic>liquid chromatography</topic><topic>Mass Spectrometry</topic><topic>Metabolites</topic><topic>metsulfuron</topic><topic>Molecular Sequence Data</topic><topic>nicosulfuron</topic><topic>nitrogen</topic><topic>Origin, evolution, domestication</topic><topic>Parasitic plants. Weeds</topic><topic>phylogenetic analysis</topic><topic>Phylogeny</topic><topic>Phytopathology. Animal pests. Plant and forest protection</topic><topic>Plant material</topic><topic>Polymerase Chain Reaction</topic><topic>Pyridines - metabolism</topic><topic>rimsulfuron</topic><topic>RNA, Ribosomal, 16S</topic><topic>Sequence Analysis, DNA</topic><topic>Serratia marcescens</topic><topic>Serratia marcescens - classification</topic><topic>Serratia marcescens - genetics</topic><topic>Serratia marcescens - isolation &amp; purification</topic><topic>Serratia marcescens - metabolism</topic><topic>Sewage - microbiology</topic><topic>Sludge</topic><topic>Sulfonylurea Compounds - metabolism</topic><topic>Temperature</topic><topic>wastewater treatment</topic><topic>Water treatment</topic><topic>Weeds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Mu, Wenhui</creatorcontrib><creatorcontrib>Hou, Zhiguang</creatorcontrib><creatorcontrib>Wu, Xian</creatorcontrib><creatorcontrib>Zhao, Weiwei</creatorcontrib><creatorcontrib>Zhang, Xianghui</creatorcontrib><creatorcontrib>Pan, Hongyu</creatorcontrib><creatorcontrib>Zhang, Shihong</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>Aqualine</collection><collection>Biotechnology Research Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of environmental science and health. Part B, Pesticides, food contaminants, and agricultural wastes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Hao</au><au>Mu, Wenhui</au><au>Hou, Zhiguang</au><au>Wu, Xian</au><au>Zhao, Weiwei</au><au>Zhang, Xianghui</au><au>Pan, Hongyu</au><au>Zhang, Shihong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biodegradation of nicosulfuron by the bacterium Serratia marcescens N80</atitle><jtitle>Journal of environmental science and health. Part B, Pesticides, food contaminants, and agricultural wastes</jtitle><addtitle>J Environ Sci Health B</addtitle><date>2012-03</date><risdate>2012</risdate><volume>47</volume><issue>3</issue><spage>153</spage><epage>160</epage><pages>153-160</pages><issn>1532-4109</issn><issn>0360-1234</issn><eissn>1532-4109</eissn><coden>JPFCD2</coden><abstract>By enrichment culturing of the sludge collected from the industrial wastewater treatment pond, we isolated a highly efficient nicosulfuron degrading bacterium Serratia marcescens N80. In liquid medium, Serratia marcescens N80 grows using nicosulfuron as the sole nitrogen source, and the optimal temperature, pH values, and inoculation for degradation are 30–35°C, 6.0–7.0, and 3.0% (v/v), respectively. With the initial concentration of 10 mg L⁻¹, the degradation rate is 93.6% in 96 hours; as the initial concentrations are higher than 10 mg L⁻¹, the biodegradation rates decrease as the nicosulfuron concentrations increase; when the concentration is 400 mg L⁻¹, the degradation rate is only 53.1%. Degradation follows the pesticide degradation kinetic equation at concentrations between 5 mg L⁻¹ and 50 mg L⁻¹. Identification of the metabolites by the liquid chromatography/mass spectrometry (LC/MS) indicates that the degradation of nicosulfuron is achieved by breaking the sulfonylurea bridge. The strain N80 also degraded some other sulfonylurea herbicides, including ethametsulfuron, tribenuron-methyl, metsulfuron-methyl, chlorimuron-ethyl,and rimsulfuron.</abstract><cop>Philadelphia, PA</cop><pub>Taylor &amp; Francis Group</pub><pmid>22375586</pmid><doi>10.1080/03601234.2012.632249</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1532-4109
ispartof Journal of environmental science and health. Part B, Pesticides, food contaminants, and agricultural wastes, 2012-03, Vol.47 (3), p.153-160
issn 1532-4109
0360-1234
1532-4109
language eng
recordid cdi_pascalfrancis_primary_25651343
source Taylor and Francis Science and Technology Collection
subjects 16S rDNA
Agronomy. Soil science and plant productions
Animal, plant and microbial ecology
Applied ecology
Bacteria
Base Sequence
Biodegradation
Biodegradation, Environmental
Biological and medical sciences
Chromatography, Liquid
DNA, Bacterial
equations
Fundamental and applied biological sciences. Psychology
Generalities. Genetics. Plant material
Genetics and breeding of economic plants
Herbicides - metabolism
Hydrogen-Ion Concentration
liquid chromatography
Mass Spectrometry
Metabolites
metsulfuron
Molecular Sequence Data
nicosulfuron
nitrogen
Origin, evolution, domestication
Parasitic plants. Weeds
phylogenetic analysis
Phylogeny
Phytopathology. Animal pests. Plant and forest protection
Plant material
Polymerase Chain Reaction
Pyridines - metabolism
rimsulfuron
RNA, Ribosomal, 16S
Sequence Analysis, DNA
Serratia marcescens
Serratia marcescens - classification
Serratia marcescens - genetics
Serratia marcescens - isolation & purification
Serratia marcescens - metabolism
Sewage - microbiology
Sludge
Sulfonylurea Compounds - metabolism
Temperature
wastewater treatment
Water treatment
Weeds
title Biodegradation of nicosulfuron by the bacterium Serratia marcescens N80
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A39%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biodegradation%20of%20nicosulfuron%20by%20the%20bacterium%20Serratia%20marcescens%20N80&rft.jtitle=Journal%20of%20environmental%20science%20and%20health.%20Part%20B,%20Pesticides,%20food%20contaminants,%20and%20agricultural%20wastes&rft.au=Zhang,%20Hao&rft.date=2012-03&rft.volume=47&rft.issue=3&rft.spage=153&rft.epage=160&rft.pages=153-160&rft.issn=1532-4109&rft.eissn=1532-4109&rft.coden=JPFCD2&rft_id=info:doi/10.1080/03601234.2012.632249&rft_dat=%3Cproquest_pasca%3E2605646821%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c476t-4e3428e96fc77807ca730a3ea8fd99dd173902f76fa2213241c5197bb431c1e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=926930620&rft_id=info:pmid/22375586&rfr_iscdi=true