Loading…
Bayesian inference on EMRI signals using low frequency approximations
Extreme mass ratio inspirals (EMRIs) are thought to be one of the most exciting gravitational wave sources to be detected with LISA. Due to their complicated nature and weak amplitudes the detection and parameter estimation of such sources is a challenging task. In this paper we present a statistica...
Saved in:
Published in: | Classical and quantum gravity 2012-07, Vol.29 (14), p.145014-18 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c427t-13f0752fbf3f423e9ddc94333b38ca2ed8b64089d4914c43911cdf48d78a07253 |
---|---|
cites | cdi_FETCH-LOGICAL-c427t-13f0752fbf3f423e9ddc94333b38ca2ed8b64089d4914c43911cdf48d78a07253 |
container_end_page | 18 |
container_issue | 14 |
container_start_page | 145014 |
container_title | Classical and quantum gravity |
container_volume | 29 |
creator | Ali, Asad Christensen, Nelson Meyer, Renate Röver, Christian |
description | Extreme mass ratio inspirals (EMRIs) are thought to be one of the most exciting gravitational wave sources to be detected with LISA. Due to their complicated nature and weak amplitudes the detection and parameter estimation of such sources is a challenging task. In this paper we present a statistical methodology based on Bayesian inference in which the estimation of parameters is carried out by advanced Markov chain Monte Carlo (MCMC) algorithms such as parallel tempering MCMC. We analysed high and medium mass EMRI systems that fall well inside the low frequency range of LISA. In the context of the Mock LISA Data Challenges, our investigation and results are also the first instance in which a fully Markovian algorithm is applied for EMRI searches. Results show that our algorithm worked well in recovering EMRI signals from different (simulated) LISA data sets having single and multiple EMRI sources and holds great promise for posterior computation under more realistic conditions. The search and estimation methods presented in this paper are general in their nature, and can be applied in any other scenario such as AdLIGO, AdVIRGO and Einstein Telescope with their respective response functions. |
doi_str_mv | 10.1088/0264-9381/29/14/145014 |
format | article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_26143690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671583191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-13f0752fbf3f423e9ddc94333b38ca2ed8b64089d4914c43911cdf48d78a07253</originalsourceid><addsrcrecordid>eNqFkNFKwzAUhoMoOKevIL0RvKnLSdI2udQxdTARRK9DliYjo0trsqJ7e1M6discODffOf_Ph9At4AfAnM8wKVkuKIcZETNgaQoM7AxNgJaQl5STczQ5QZfoKsYtxgAcyAQtntTBRKd85rw1wXhtstZni7ePZRbdxqsmZn10fpM17U9mg_nuE3PIVNeF9tft1N61Pl6jC5tIc3PcU_T1vPicv-ar95fl_HGVa0aqfQ7U4qogdm2pZYQaUddaMErpmnKtiKn5umSYi5oJYJpRAaBry3hdcYUrUtApuh__pvBUJO7lzkVtmkZ50_ZRQllBwSkISGg5ojq0MQZjZRdS3XCQgOXgTQ5K5KBEEiGBydFbOrw7ZqioVWOD8trF0zUpE1MKnDgycq7t5Lbtw-Dqv-d_Zut7dg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671583191</pqid></control><display><type>article</type><title>Bayesian inference on EMRI signals using low frequency approximations</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Ali, Asad ; Christensen, Nelson ; Meyer, Renate ; Röver, Christian</creator><creatorcontrib>Ali, Asad ; Christensen, Nelson ; Meyer, Renate ; Röver, Christian</creatorcontrib><description>Extreme mass ratio inspirals (EMRIs) are thought to be one of the most exciting gravitational wave sources to be detected with LISA. Due to their complicated nature and weak amplitudes the detection and parameter estimation of such sources is a challenging task. In this paper we present a statistical methodology based on Bayesian inference in which the estimation of parameters is carried out by advanced Markov chain Monte Carlo (MCMC) algorithms such as parallel tempering MCMC. We analysed high and medium mass EMRI systems that fall well inside the low frequency range of LISA. In the context of the Mock LISA Data Challenges, our investigation and results are also the first instance in which a fully Markovian algorithm is applied for EMRI searches. Results show that our algorithm worked well in recovering EMRI signals from different (simulated) LISA data sets having single and multiple EMRI sources and holds great promise for posterior computation under more realistic conditions. The search and estimation methods presented in this paper are general in their nature, and can be applied in any other scenario such as AdLIGO, AdVIRGO and Einstein Telescope with their respective response functions.</description><identifier>ISSN: 0264-9381</identifier><identifier>EISSN: 1361-6382</identifier><identifier>DOI: 10.1088/0264-9381/29/14/145014</identifier><identifier>CODEN: CQGRDG</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; Bayesian analysis ; Bayesian inference ; Computer simulation ; EMRIs ; Exact sciences and technology ; General relativity and gravitation ; GWs ; Inference ; LISA ; Low frequencies ; Monte Carlo methods ; parallel tempering MCMC ; Physics ; Quantum gravity ; Searching</subject><ispartof>Classical and quantum gravity, 2012-07, Vol.29 (14), p.145014-18</ispartof><rights>2012 IOP Publishing Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-13f0752fbf3f423e9ddc94333b38ca2ed8b64089d4914c43911cdf48d78a07253</citedby><cites>FETCH-LOGICAL-c427t-13f0752fbf3f423e9ddc94333b38ca2ed8b64089d4914c43911cdf48d78a07253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26143690$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ali, Asad</creatorcontrib><creatorcontrib>Christensen, Nelson</creatorcontrib><creatorcontrib>Meyer, Renate</creatorcontrib><creatorcontrib>Röver, Christian</creatorcontrib><title>Bayesian inference on EMRI signals using low frequency approximations</title><title>Classical and quantum gravity</title><addtitle>CQG</addtitle><addtitle>Class. Quantum Grav</addtitle><description>Extreme mass ratio inspirals (EMRIs) are thought to be one of the most exciting gravitational wave sources to be detected with LISA. Due to their complicated nature and weak amplitudes the detection and parameter estimation of such sources is a challenging task. In this paper we present a statistical methodology based on Bayesian inference in which the estimation of parameters is carried out by advanced Markov chain Monte Carlo (MCMC) algorithms such as parallel tempering MCMC. We analysed high and medium mass EMRI systems that fall well inside the low frequency range of LISA. In the context of the Mock LISA Data Challenges, our investigation and results are also the first instance in which a fully Markovian algorithm is applied for EMRI searches. Results show that our algorithm worked well in recovering EMRI signals from different (simulated) LISA data sets having single and multiple EMRI sources and holds great promise for posterior computation under more realistic conditions. The search and estimation methods presented in this paper are general in their nature, and can be applied in any other scenario such as AdLIGO, AdVIRGO and Einstein Telescope with their respective response functions.</description><subject>Algorithms</subject><subject>Bayesian analysis</subject><subject>Bayesian inference</subject><subject>Computer simulation</subject><subject>EMRIs</subject><subject>Exact sciences and technology</subject><subject>General relativity and gravitation</subject><subject>GWs</subject><subject>Inference</subject><subject>LISA</subject><subject>Low frequencies</subject><subject>Monte Carlo methods</subject><subject>parallel tempering MCMC</subject><subject>Physics</subject><subject>Quantum gravity</subject><subject>Searching</subject><issn>0264-9381</issn><issn>1361-6382</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkNFKwzAUhoMoOKevIL0RvKnLSdI2udQxdTARRK9DliYjo0trsqJ7e1M6discODffOf_Ph9At4AfAnM8wKVkuKIcZETNgaQoM7AxNgJaQl5STczQ5QZfoKsYtxgAcyAQtntTBRKd85rw1wXhtstZni7ePZRbdxqsmZn10fpM17U9mg_nuE3PIVNeF9tft1N61Pl6jC5tIc3PcU_T1vPicv-ar95fl_HGVa0aqfQ7U4qogdm2pZYQaUddaMErpmnKtiKn5umSYi5oJYJpRAaBry3hdcYUrUtApuh__pvBUJO7lzkVtmkZ50_ZRQllBwSkISGg5ojq0MQZjZRdS3XCQgOXgTQ5K5KBEEiGBydFbOrw7ZqioVWOD8trF0zUpE1MKnDgycq7t5Lbtw-Dqv-d_Zut7dg</recordid><startdate>20120721</startdate><enddate>20120721</enddate><creator>Ali, Asad</creator><creator>Christensen, Nelson</creator><creator>Meyer, Renate</creator><creator>Röver, Christian</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120721</creationdate><title>Bayesian inference on EMRI signals using low frequency approximations</title><author>Ali, Asad ; Christensen, Nelson ; Meyer, Renate ; Röver, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-13f0752fbf3f423e9ddc94333b38ca2ed8b64089d4914c43911cdf48d78a07253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Bayesian analysis</topic><topic>Bayesian inference</topic><topic>Computer simulation</topic><topic>EMRIs</topic><topic>Exact sciences and technology</topic><topic>General relativity and gravitation</topic><topic>GWs</topic><topic>Inference</topic><topic>LISA</topic><topic>Low frequencies</topic><topic>Monte Carlo methods</topic><topic>parallel tempering MCMC</topic><topic>Physics</topic><topic>Quantum gravity</topic><topic>Searching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ali, Asad</creatorcontrib><creatorcontrib>Christensen, Nelson</creatorcontrib><creatorcontrib>Meyer, Renate</creatorcontrib><creatorcontrib>Röver, Christian</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Classical and quantum gravity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ali, Asad</au><au>Christensen, Nelson</au><au>Meyer, Renate</au><au>Röver, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian inference on EMRI signals using low frequency approximations</atitle><jtitle>Classical and quantum gravity</jtitle><stitle>CQG</stitle><addtitle>Class. Quantum Grav</addtitle><date>2012-07-21</date><risdate>2012</risdate><volume>29</volume><issue>14</issue><spage>145014</spage><epage>18</epage><pages>145014-18</pages><issn>0264-9381</issn><eissn>1361-6382</eissn><coden>CQGRDG</coden><abstract>Extreme mass ratio inspirals (EMRIs) are thought to be one of the most exciting gravitational wave sources to be detected with LISA. Due to their complicated nature and weak amplitudes the detection and parameter estimation of such sources is a challenging task. In this paper we present a statistical methodology based on Bayesian inference in which the estimation of parameters is carried out by advanced Markov chain Monte Carlo (MCMC) algorithms such as parallel tempering MCMC. We analysed high and medium mass EMRI systems that fall well inside the low frequency range of LISA. In the context of the Mock LISA Data Challenges, our investigation and results are also the first instance in which a fully Markovian algorithm is applied for EMRI searches. Results show that our algorithm worked well in recovering EMRI signals from different (simulated) LISA data sets having single and multiple EMRI sources and holds great promise for posterior computation under more realistic conditions. The search and estimation methods presented in this paper are general in their nature, and can be applied in any other scenario such as AdLIGO, AdVIRGO and Einstein Telescope with their respective response functions.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/0264-9381/29/14/145014</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0264-9381 |
ispartof | Classical and quantum gravity, 2012-07, Vol.29 (14), p.145014-18 |
issn | 0264-9381 1361-6382 |
language | eng |
recordid | cdi_pascalfrancis_primary_26143690 |
source | Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List) |
subjects | Algorithms Bayesian analysis Bayesian inference Computer simulation EMRIs Exact sciences and technology General relativity and gravitation GWs Inference LISA Low frequencies Monte Carlo methods parallel tempering MCMC Physics Quantum gravity Searching |
title | Bayesian inference on EMRI signals using low frequency approximations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T02%3A22%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20inference%20on%20EMRI%20signals%20using%20low%20frequency%20approximations&rft.jtitle=Classical%20and%20quantum%20gravity&rft.au=Ali,%20Asad&rft.date=2012-07-21&rft.volume=29&rft.issue=14&rft.spage=145014&rft.epage=18&rft.pages=145014-18&rft.issn=0264-9381&rft.eissn=1361-6382&rft.coden=CQGRDG&rft_id=info:doi/10.1088/0264-9381/29/14/145014&rft_dat=%3Cproquest_pasca%3E1671583191%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c427t-13f0752fbf3f423e9ddc94333b38ca2ed8b64089d4914c43911cdf48d78a07253%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671583191&rft_id=info:pmid/&rfr_iscdi=true |