Loading…

Bayesian inference on EMRI signals using low frequency approximations

Extreme mass ratio inspirals (EMRIs) are thought to be one of the most exciting gravitational wave sources to be detected with LISA. Due to their complicated nature and weak amplitudes the detection and parameter estimation of such sources is a challenging task. In this paper we present a statistica...

Full description

Saved in:
Bibliographic Details
Published in:Classical and quantum gravity 2012-07, Vol.29 (14), p.145014-18
Main Authors: Ali, Asad, Christensen, Nelson, Meyer, Renate, Röver, Christian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c427t-13f0752fbf3f423e9ddc94333b38ca2ed8b64089d4914c43911cdf48d78a07253
cites cdi_FETCH-LOGICAL-c427t-13f0752fbf3f423e9ddc94333b38ca2ed8b64089d4914c43911cdf48d78a07253
container_end_page 18
container_issue 14
container_start_page 145014
container_title Classical and quantum gravity
container_volume 29
creator Ali, Asad
Christensen, Nelson
Meyer, Renate
Röver, Christian
description Extreme mass ratio inspirals (EMRIs) are thought to be one of the most exciting gravitational wave sources to be detected with LISA. Due to their complicated nature and weak amplitudes the detection and parameter estimation of such sources is a challenging task. In this paper we present a statistical methodology based on Bayesian inference in which the estimation of parameters is carried out by advanced Markov chain Monte Carlo (MCMC) algorithms such as parallel tempering MCMC. We analysed high and medium mass EMRI systems that fall well inside the low frequency range of LISA. In the context of the Mock LISA Data Challenges, our investigation and results are also the first instance in which a fully Markovian algorithm is applied for EMRI searches. Results show that our algorithm worked well in recovering EMRI signals from different (simulated) LISA data sets having single and multiple EMRI sources and holds great promise for posterior computation under more realistic conditions. The search and estimation methods presented in this paper are general in their nature, and can be applied in any other scenario such as AdLIGO, AdVIRGO and Einstein Telescope with their respective response functions.
doi_str_mv 10.1088/0264-9381/29/14/145014
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_26143690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671583191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-13f0752fbf3f423e9ddc94333b38ca2ed8b64089d4914c43911cdf48d78a07253</originalsourceid><addsrcrecordid>eNqFkNFKwzAUhoMoOKevIL0RvKnLSdI2udQxdTARRK9DliYjo0trsqJ7e1M6discODffOf_Ph9At4AfAnM8wKVkuKIcZETNgaQoM7AxNgJaQl5STczQ5QZfoKsYtxgAcyAQtntTBRKd85rw1wXhtstZni7ePZRbdxqsmZn10fpM17U9mg_nuE3PIVNeF9tft1N61Pl6jC5tIc3PcU_T1vPicv-ar95fl_HGVa0aqfQ7U4qogdm2pZYQaUddaMErpmnKtiKn5umSYi5oJYJpRAaBry3hdcYUrUtApuh__pvBUJO7lzkVtmkZ50_ZRQllBwSkISGg5ojq0MQZjZRdS3XCQgOXgTQ5K5KBEEiGBydFbOrw7ZqioVWOD8trF0zUpE1MKnDgycq7t5Lbtw-Dqv-d_Zut7dg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671583191</pqid></control><display><type>article</type><title>Bayesian inference on EMRI signals using low frequency approximations</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Ali, Asad ; Christensen, Nelson ; Meyer, Renate ; Röver, Christian</creator><creatorcontrib>Ali, Asad ; Christensen, Nelson ; Meyer, Renate ; Röver, Christian</creatorcontrib><description>Extreme mass ratio inspirals (EMRIs) are thought to be one of the most exciting gravitational wave sources to be detected with LISA. Due to their complicated nature and weak amplitudes the detection and parameter estimation of such sources is a challenging task. In this paper we present a statistical methodology based on Bayesian inference in which the estimation of parameters is carried out by advanced Markov chain Monte Carlo (MCMC) algorithms such as parallel tempering MCMC. We analysed high and medium mass EMRI systems that fall well inside the low frequency range of LISA. In the context of the Mock LISA Data Challenges, our investigation and results are also the first instance in which a fully Markovian algorithm is applied for EMRI searches. Results show that our algorithm worked well in recovering EMRI signals from different (simulated) LISA data sets having single and multiple EMRI sources and holds great promise for posterior computation under more realistic conditions. The search and estimation methods presented in this paper are general in their nature, and can be applied in any other scenario such as AdLIGO, AdVIRGO and Einstein Telescope with their respective response functions.</description><identifier>ISSN: 0264-9381</identifier><identifier>EISSN: 1361-6382</identifier><identifier>DOI: 10.1088/0264-9381/29/14/145014</identifier><identifier>CODEN: CQGRDG</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; Bayesian analysis ; Bayesian inference ; Computer simulation ; EMRIs ; Exact sciences and technology ; General relativity and gravitation ; GWs ; Inference ; LISA ; Low frequencies ; Monte Carlo methods ; parallel tempering MCMC ; Physics ; Quantum gravity ; Searching</subject><ispartof>Classical and quantum gravity, 2012-07, Vol.29 (14), p.145014-18</ispartof><rights>2012 IOP Publishing Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-13f0752fbf3f423e9ddc94333b38ca2ed8b64089d4914c43911cdf48d78a07253</citedby><cites>FETCH-LOGICAL-c427t-13f0752fbf3f423e9ddc94333b38ca2ed8b64089d4914c43911cdf48d78a07253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26143690$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ali, Asad</creatorcontrib><creatorcontrib>Christensen, Nelson</creatorcontrib><creatorcontrib>Meyer, Renate</creatorcontrib><creatorcontrib>Röver, Christian</creatorcontrib><title>Bayesian inference on EMRI signals using low frequency approximations</title><title>Classical and quantum gravity</title><addtitle>CQG</addtitle><addtitle>Class. Quantum Grav</addtitle><description>Extreme mass ratio inspirals (EMRIs) are thought to be one of the most exciting gravitational wave sources to be detected with LISA. Due to their complicated nature and weak amplitudes the detection and parameter estimation of such sources is a challenging task. In this paper we present a statistical methodology based on Bayesian inference in which the estimation of parameters is carried out by advanced Markov chain Monte Carlo (MCMC) algorithms such as parallel tempering MCMC. We analysed high and medium mass EMRI systems that fall well inside the low frequency range of LISA. In the context of the Mock LISA Data Challenges, our investigation and results are also the first instance in which a fully Markovian algorithm is applied for EMRI searches. Results show that our algorithm worked well in recovering EMRI signals from different (simulated) LISA data sets having single and multiple EMRI sources and holds great promise for posterior computation under more realistic conditions. The search and estimation methods presented in this paper are general in their nature, and can be applied in any other scenario such as AdLIGO, AdVIRGO and Einstein Telescope with their respective response functions.</description><subject>Algorithms</subject><subject>Bayesian analysis</subject><subject>Bayesian inference</subject><subject>Computer simulation</subject><subject>EMRIs</subject><subject>Exact sciences and technology</subject><subject>General relativity and gravitation</subject><subject>GWs</subject><subject>Inference</subject><subject>LISA</subject><subject>Low frequencies</subject><subject>Monte Carlo methods</subject><subject>parallel tempering MCMC</subject><subject>Physics</subject><subject>Quantum gravity</subject><subject>Searching</subject><issn>0264-9381</issn><issn>1361-6382</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkNFKwzAUhoMoOKevIL0RvKnLSdI2udQxdTARRK9DliYjo0trsqJ7e1M6discODffOf_Ph9At4AfAnM8wKVkuKIcZETNgaQoM7AxNgJaQl5STczQ5QZfoKsYtxgAcyAQtntTBRKd85rw1wXhtstZni7ePZRbdxqsmZn10fpM17U9mg_nuE3PIVNeF9tft1N61Pl6jC5tIc3PcU_T1vPicv-ar95fl_HGVa0aqfQ7U4qogdm2pZYQaUddaMErpmnKtiKn5umSYi5oJYJpRAaBry3hdcYUrUtApuh__pvBUJO7lzkVtmkZ50_ZRQllBwSkISGg5ojq0MQZjZRdS3XCQgOXgTQ5K5KBEEiGBydFbOrw7ZqioVWOD8trF0zUpE1MKnDgycq7t5Lbtw-Dqv-d_Zut7dg</recordid><startdate>20120721</startdate><enddate>20120721</enddate><creator>Ali, Asad</creator><creator>Christensen, Nelson</creator><creator>Meyer, Renate</creator><creator>Röver, Christian</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120721</creationdate><title>Bayesian inference on EMRI signals using low frequency approximations</title><author>Ali, Asad ; Christensen, Nelson ; Meyer, Renate ; Röver, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-13f0752fbf3f423e9ddc94333b38ca2ed8b64089d4914c43911cdf48d78a07253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Bayesian analysis</topic><topic>Bayesian inference</topic><topic>Computer simulation</topic><topic>EMRIs</topic><topic>Exact sciences and technology</topic><topic>General relativity and gravitation</topic><topic>GWs</topic><topic>Inference</topic><topic>LISA</topic><topic>Low frequencies</topic><topic>Monte Carlo methods</topic><topic>parallel tempering MCMC</topic><topic>Physics</topic><topic>Quantum gravity</topic><topic>Searching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ali, Asad</creatorcontrib><creatorcontrib>Christensen, Nelson</creatorcontrib><creatorcontrib>Meyer, Renate</creatorcontrib><creatorcontrib>Röver, Christian</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Classical and quantum gravity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ali, Asad</au><au>Christensen, Nelson</au><au>Meyer, Renate</au><au>Röver, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian inference on EMRI signals using low frequency approximations</atitle><jtitle>Classical and quantum gravity</jtitle><stitle>CQG</stitle><addtitle>Class. Quantum Grav</addtitle><date>2012-07-21</date><risdate>2012</risdate><volume>29</volume><issue>14</issue><spage>145014</spage><epage>18</epage><pages>145014-18</pages><issn>0264-9381</issn><eissn>1361-6382</eissn><coden>CQGRDG</coden><abstract>Extreme mass ratio inspirals (EMRIs) are thought to be one of the most exciting gravitational wave sources to be detected with LISA. Due to their complicated nature and weak amplitudes the detection and parameter estimation of such sources is a challenging task. In this paper we present a statistical methodology based on Bayesian inference in which the estimation of parameters is carried out by advanced Markov chain Monte Carlo (MCMC) algorithms such as parallel tempering MCMC. We analysed high and medium mass EMRI systems that fall well inside the low frequency range of LISA. In the context of the Mock LISA Data Challenges, our investigation and results are also the first instance in which a fully Markovian algorithm is applied for EMRI searches. Results show that our algorithm worked well in recovering EMRI signals from different (simulated) LISA data sets having single and multiple EMRI sources and holds great promise for posterior computation under more realistic conditions. The search and estimation methods presented in this paper are general in their nature, and can be applied in any other scenario such as AdLIGO, AdVIRGO and Einstein Telescope with their respective response functions.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/0264-9381/29/14/145014</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0264-9381
ispartof Classical and quantum gravity, 2012-07, Vol.29 (14), p.145014-18
issn 0264-9381
1361-6382
language eng
recordid cdi_pascalfrancis_primary_26143690
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects Algorithms
Bayesian analysis
Bayesian inference
Computer simulation
EMRIs
Exact sciences and technology
General relativity and gravitation
GWs
Inference
LISA
Low frequencies
Monte Carlo methods
parallel tempering MCMC
Physics
Quantum gravity
Searching
title Bayesian inference on EMRI signals using low frequency approximations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T02%3A22%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20inference%20on%20EMRI%20signals%20using%20low%20frequency%20approximations&rft.jtitle=Classical%20and%20quantum%20gravity&rft.au=Ali,%20Asad&rft.date=2012-07-21&rft.volume=29&rft.issue=14&rft.spage=145014&rft.epage=18&rft.pages=145014-18&rft.issn=0264-9381&rft.eissn=1361-6382&rft.coden=CQGRDG&rft_id=info:doi/10.1088/0264-9381/29/14/145014&rft_dat=%3Cproquest_pasca%3E1671583191%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c427t-13f0752fbf3f423e9ddc94333b38ca2ed8b64089d4914c43911cdf48d78a07253%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671583191&rft_id=info:pmid/&rfr_iscdi=true