Loading…

Fabrication of ZrO2 and ZrN Films by Metalorganic Chemical Vapor Deposition Employing New Zr Precursors

The application of new zirconium precursors for the fabrication of ZrO2 and ZrN thin films by metalorganic chemical vapor deposition (MOCVD) is presented. The all-nitrogen coordinated Zr precursors exhibit improved thermal properties for vapor phase fabrication of thin films. The growth of ZrO2 thin...

Full description

Saved in:
Bibliographic Details
Published in:Crystal growth & design 2012-10, Vol.12 (10), p.5079-5089
Main Authors: Banerjee, Manish, Srinivasan, Nagendra Babu, Zhu, Huaizhi, Kim, Sun Ja, Xu, Ke, Winter, Manuela, Becker, Hans-Werner, Rogalla, Detlef, de los Arcos, Teresa, Bekermann, Daniela, Barreca, Davide, Fischer, Roland A, Devi, Anjana
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The application of new zirconium precursors for the fabrication of ZrO2 and ZrN thin films by metalorganic chemical vapor deposition (MOCVD) is presented. The all-nitrogen coordinated Zr precursors exhibit improved thermal properties for vapor phase fabrication of thin films. The growth of ZrO2 thin films was realized by the combination of the Zr complex with oxygen, while the formation of ZrN thin films was achieved for the first time employing a single source precursor (SSP) approach. This was enabled by the presence of nitrogen containing ligands which contributes to the formation of the ZrN phase without the need for any additional nitrogen source in contrast to classical film growth processes for ZrN thin films. In the first step the newly developed precursors were evaluated thoroughly for their use in MOCVD applications, and in the next step they were utilized for the growth of ZrO2 and ZrN thin films on Si(100) substrates. Polycrystalline ZrO2 films that crystallized in the monoclinic phase and the fcc-ZrN films oriented in the (200) direction were obtained, and their structure, morphology, and composition were analyzed by a series of techniques. This work shows the potential of tuning precursors for vapor phase fabrication of Zr containing thin films with a goal of obtaining two different classes of material systems (ZrO2 and ZrN) using one common precursor.
ISSN:1528-7483
1528-7505
DOI:10.1021/cg3010147