Loading…

Novel System Architecture and Waveform Design for Cognitive Radar Radio Networks

A novel approach to combining communication and radar functionalities in a single waveform design for cognitive radar radio (CRR) networks is proposed. This approach aims at extracting the target parameters from the radar scene, as well as facilitating high-data-rate communications between CRR nodes...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on vehicular technology 2012-10, Vol.61 (8), p.3630-3642
Main Authors: Nijsure, Y., Yifan Chen, Boussakta, S., Chau Yuen, Yong Huat Chew, Zhiguo Ding
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A novel approach to combining communication and radar functionalities in a single waveform design for cognitive radar radio (CRR) networks is proposed. This approach aims at extracting the target parameters from the radar scene, as well as facilitating high-data-rate communications between CRR nodes, by adopting a single waveform optimization solution. The system design technique addresses the coexisting communication and radar detection problems in mission-critical services, where there is a need of integrating the knowledge about the target scene gained from distinct radar entities functioning in tandem with each other. High spatial resolution and immunity to multipath fading make ultrawideband (UWB) signals an appropriate choice for such applications. The proposed solution is achieved by applying the mutual-information-based strategy to design the sequence of UWB transmission pulses and embed into them the communication data with the pulse position modulation scheme. With subsequent iterations of the algorithm, simulation results demonstrate an improvement in extraction of the parameters from the radar scene, such as target position and impulse response, while still maintaining high-throughput radio links with low bit error rates between CRR nodes.
ISSN:0018-9545
1939-9359
DOI:10.1109/TVT.2012.2203328