Loading…

Error Correction for Cooperative Data Exchange

This paper considers the problem of error correction for a cooperative data exchange (CDE) system, where some clients are compromised or failed and send false messages. Assuming each client possesses a subset of the total messages, we analyze the error correction capability when every client is allo...

Full description

Saved in:
Bibliographic Details
Published in:IEEE communications letters 2012-11, Vol.16 (11), p.1856-1859
Main Authors: Wentu Song, Xiumin Wang, Chau Yuen, Li, T. J., Rongquan Feng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c420t-f16c39f1e550ff52ce9723b3d1f32b500cc0b4b9053f4c273d4fde7626545b073
cites cdi_FETCH-LOGICAL-c420t-f16c39f1e550ff52ce9723b3d1f32b500cc0b4b9053f4c273d4fde7626545b073
container_end_page 1859
container_issue 11
container_start_page 1856
container_title IEEE communications letters
container_volume 16
creator Wentu Song
Xiumin Wang
Chau Yuen
Li, T. J.
Rongquan Feng
description This paper considers the problem of error correction for a cooperative data exchange (CDE) system, where some clients are compromised or failed and send false messages. Assuming each client possesses a subset of the total messages, we analyze the error correction capability when every client is allowed to broadcast only one linearly-coded message. Our error correction capability bound determines the maximum number of clients that can be compromised or failed without jeopardizing the final decoding solution at each client. We show that deterministic, feasible linear codes exist that can achieve the derived bound. We also evaluate random linear codes, where the coding coefficients are drawn randomly, and then develop the probability for a client to withstand a certain number of compromised or failed peers and successfully deduce the complete message for any network size and any initial message distributions.
doi_str_mv 10.1109/LCOMM.2012.100812.121489
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_26636269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6329476</ieee_id><sourcerecordid>1266713060</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-f16c39f1e550ff52ce9723b3d1f32b500cc0b4b9053f4c273d4fde7626545b073</originalsourceid><addsrcrecordid>eNpdkM9PwyAUx4nRxDn9C7w0MSZeWh9QaDmaOn8kW3bRM6EMtEtXJnRG_3vpuuzghcfL-zz45oNQgiHDGMT9vFouFhkBTDIMUA6F4LwUJ2iCGStTEo_TeIdSpEUhynN0EcIaIkoYnqBs5r3zSeW8N7pvXJfYfeu2xqu--TbJo-pVMvvRn6r7MJfozKo2mKtDnaL3p9lb9ZLOl8-v1cM81TmBPrWYayosNoyBtYxoIwpCa7rClpKaAWgNdV4LYNTmmhR0lduVKTjhLGc1FHSK7sZ3t9597Uzo5aYJ2rSt6ozbBYkJ5wWmwCGiN__Qtdv5LqaLFAHBucAkUuVIae9C8MbKrW82yv9KDHIQKfci5SBSjiLlKDKu3h4-UEGr1nrV6SYc92MSGoMP3PXINcaY45hTIvKC0z-DCHnp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1220966912</pqid></control><display><type>article</type><title>Error Correction for Cooperative Data Exchange</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Wentu Song ; Xiumin Wang ; Chau Yuen ; Li, T. J. ; Rongquan Feng</creator><creatorcontrib>Wentu Song ; Xiumin Wang ; Chau Yuen ; Li, T. J. ; Rongquan Feng</creatorcontrib><description>This paper considers the problem of error correction for a cooperative data exchange (CDE) system, where some clients are compromised or failed and send false messages. Assuming each client possesses a subset of the total messages, we analyze the error correction capability when every client is allowed to broadcast only one linearly-coded message. Our error correction capability bound determines the maximum number of clients that can be compromised or failed without jeopardizing the final decoding solution at each client. We show that deterministic, feasible linear codes exist that can achieve the derived bound. We also evaluate random linear codes, where the coding coefficients are drawn randomly, and then develop the probability for a client to withstand a certain number of compromised or failed peers and successfully deduce the complete message for any network size and any initial message distributions.</description><identifier>ISSN: 1089-7798</identifier><identifier>EISSN: 1558-2558</identifier><identifier>DOI: 10.1109/LCOMM.2012.100812.121489</identifier><identifier>CODEN: ICLEF6</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Broadcasting ; Clients ; Coding ; Coding, codes ; Cooperative data exchange ; Data exchange ; Decoding ; Error correction ; Error correction &amp; detection ; Error correction codes ; error detection ; Exact sciences and technology ; Information, signal and communications theory ; Linear code ; Linear codes ; Messages ; network coding ; Networks ; Polynomials ; security ; Signal and communications theory ; Studies ; Switching and signalling ; Systems, networks and services of telecommunications ; Telecommunications ; Telecommunications and information theory ; Transmission and modulation (techniques and equipments) ; Vectors</subject><ispartof>IEEE communications letters, 2012-11, Vol.16 (11), p.1856-1859</ispartof><rights>2014 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-f16c39f1e550ff52ce9723b3d1f32b500cc0b4b9053f4c273d4fde7626545b073</citedby><cites>FETCH-LOGICAL-c420t-f16c39f1e550ff52ce9723b3d1f32b500cc0b4b9053f4c273d4fde7626545b073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6329476$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26636269$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wentu Song</creatorcontrib><creatorcontrib>Xiumin Wang</creatorcontrib><creatorcontrib>Chau Yuen</creatorcontrib><creatorcontrib>Li, T. J.</creatorcontrib><creatorcontrib>Rongquan Feng</creatorcontrib><title>Error Correction for Cooperative Data Exchange</title><title>IEEE communications letters</title><addtitle>COML</addtitle><description>This paper considers the problem of error correction for a cooperative data exchange (CDE) system, where some clients are compromised or failed and send false messages. Assuming each client possesses a subset of the total messages, we analyze the error correction capability when every client is allowed to broadcast only one linearly-coded message. Our error correction capability bound determines the maximum number of clients that can be compromised or failed without jeopardizing the final decoding solution at each client. We show that deterministic, feasible linear codes exist that can achieve the derived bound. We also evaluate random linear codes, where the coding coefficients are drawn randomly, and then develop the probability for a client to withstand a certain number of compromised or failed peers and successfully deduce the complete message for any network size and any initial message distributions.</description><subject>Applied sciences</subject><subject>Broadcasting</subject><subject>Clients</subject><subject>Coding</subject><subject>Coding, codes</subject><subject>Cooperative data exchange</subject><subject>Data exchange</subject><subject>Decoding</subject><subject>Error correction</subject><subject>Error correction &amp; detection</subject><subject>Error correction codes</subject><subject>error detection</subject><subject>Exact sciences and technology</subject><subject>Information, signal and communications theory</subject><subject>Linear code</subject><subject>Linear codes</subject><subject>Messages</subject><subject>network coding</subject><subject>Networks</subject><subject>Polynomials</subject><subject>security</subject><subject>Signal and communications theory</subject><subject>Studies</subject><subject>Switching and signalling</subject><subject>Systems, networks and services of telecommunications</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Transmission and modulation (techniques and equipments)</subject><subject>Vectors</subject><issn>1089-7798</issn><issn>1558-2558</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpdkM9PwyAUx4nRxDn9C7w0MSZeWh9QaDmaOn8kW3bRM6EMtEtXJnRG_3vpuuzghcfL-zz45oNQgiHDGMT9vFouFhkBTDIMUA6F4LwUJ2iCGStTEo_TeIdSpEUhynN0EcIaIkoYnqBs5r3zSeW8N7pvXJfYfeu2xqu--TbJo-pVMvvRn6r7MJfozKo2mKtDnaL3p9lb9ZLOl8-v1cM81TmBPrWYayosNoyBtYxoIwpCa7rClpKaAWgNdV4LYNTmmhR0lduVKTjhLGc1FHSK7sZ3t9597Uzo5aYJ2rSt6ozbBYkJ5wWmwCGiN__Qtdv5LqaLFAHBucAkUuVIae9C8MbKrW82yv9KDHIQKfci5SBSjiLlKDKu3h4-UEGr1nrV6SYc92MSGoMP3PXINcaY45hTIvKC0z-DCHnp</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Wentu Song</creator><creator>Xiumin Wang</creator><creator>Chau Yuen</creator><creator>Li, T. J.</creator><creator>Rongquan Feng</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20121101</creationdate><title>Error Correction for Cooperative Data Exchange</title><author>Wentu Song ; Xiumin Wang ; Chau Yuen ; Li, T. J. ; Rongquan Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-f16c39f1e550ff52ce9723b3d1f32b500cc0b4b9053f4c273d4fde7626545b073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Broadcasting</topic><topic>Clients</topic><topic>Coding</topic><topic>Coding, codes</topic><topic>Cooperative data exchange</topic><topic>Data exchange</topic><topic>Decoding</topic><topic>Error correction</topic><topic>Error correction &amp; detection</topic><topic>Error correction codes</topic><topic>error detection</topic><topic>Exact sciences and technology</topic><topic>Information, signal and communications theory</topic><topic>Linear code</topic><topic>Linear codes</topic><topic>Messages</topic><topic>network coding</topic><topic>Networks</topic><topic>Polynomials</topic><topic>security</topic><topic>Signal and communications theory</topic><topic>Studies</topic><topic>Switching and signalling</topic><topic>Systems, networks and services of telecommunications</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Transmission and modulation (techniques and equipments)</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wentu Song</creatorcontrib><creatorcontrib>Xiumin Wang</creatorcontrib><creatorcontrib>Chau Yuen</creatorcontrib><creatorcontrib>Li, T. J.</creatorcontrib><creatorcontrib>Rongquan Feng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wentu Song</au><au>Xiumin Wang</au><au>Chau Yuen</au><au>Li, T. J.</au><au>Rongquan Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Error Correction for Cooperative Data Exchange</atitle><jtitle>IEEE communications letters</jtitle><stitle>COML</stitle><date>2012-11-01</date><risdate>2012</risdate><volume>16</volume><issue>11</issue><spage>1856</spage><epage>1859</epage><pages>1856-1859</pages><issn>1089-7798</issn><eissn>1558-2558</eissn><coden>ICLEF6</coden><abstract>This paper considers the problem of error correction for a cooperative data exchange (CDE) system, where some clients are compromised or failed and send false messages. Assuming each client possesses a subset of the total messages, we analyze the error correction capability when every client is allowed to broadcast only one linearly-coded message. Our error correction capability bound determines the maximum number of clients that can be compromised or failed without jeopardizing the final decoding solution at each client. We show that deterministic, feasible linear codes exist that can achieve the derived bound. We also evaluate random linear codes, where the coding coefficients are drawn randomly, and then develop the probability for a client to withstand a certain number of compromised or failed peers and successfully deduce the complete message for any network size and any initial message distributions.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/LCOMM.2012.100812.121489</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1089-7798
ispartof IEEE communications letters, 2012-11, Vol.16 (11), p.1856-1859
issn 1089-7798
1558-2558
language eng
recordid cdi_pascalfrancis_primary_26636269
source IEEE Electronic Library (IEL) Journals
subjects Applied sciences
Broadcasting
Clients
Coding
Coding, codes
Cooperative data exchange
Data exchange
Decoding
Error correction
Error correction & detection
Error correction codes
error detection
Exact sciences and technology
Information, signal and communications theory
Linear code
Linear codes
Messages
network coding
Networks
Polynomials
security
Signal and communications theory
Studies
Switching and signalling
Systems, networks and services of telecommunications
Telecommunications
Telecommunications and information theory
Transmission and modulation (techniques and equipments)
Vectors
title Error Correction for Cooperative Data Exchange
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A09%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Error%20Correction%20for%20Cooperative%20Data%20Exchange&rft.jtitle=IEEE%20communications%20letters&rft.au=Wentu%20Song&rft.date=2012-11-01&rft.volume=16&rft.issue=11&rft.spage=1856&rft.epage=1859&rft.pages=1856-1859&rft.issn=1089-7798&rft.eissn=1558-2558&rft.coden=ICLEF6&rft_id=info:doi/10.1109/LCOMM.2012.100812.121489&rft_dat=%3Cproquest_pasca%3E1266713060%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c420t-f16c39f1e550ff52ce9723b3d1f32b500cc0b4b9053f4c273d4fde7626545b073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1220966912&rft_id=info:pmid/&rft_ieee_id=6329476&rfr_iscdi=true