Loading…
Design and Demonstration of an In-Plane Silicon-on-Insulator Optical MEMS Fabry-Pérot-Based Accelerometer Integrated With Channel Waveguides
In this paper, we present a novel optical microelectromechanical systems (MEMS) accelerometer sensor dedicated to space applications. An in-plane Fabry-Pérot (FP) microcavity (FPM) with two distributed Bragg reflectors (DBRs) is used to detect the acceleration. One of the DBR mirrors is attached to...
Saved in:
Published in: | Journal of microelectromechanical systems 2012-12, Vol.21 (6), p.1464-1470 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c297t-7ed965c2164e34a780a2f033bafd7cd9a79f6d7bbe7334608968fc0200e57e7c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c297t-7ed965c2164e34a780a2f033bafd7cd9a79f6d7bbe7334608968fc0200e57e7c3 |
container_end_page | 1470 |
container_issue | 6 |
container_start_page | 1464 |
container_title | Journal of microelectromechanical systems |
container_volume | 21 |
creator | Zandi, K. Belanger, J. A. Peter, Y-A |
description | In this paper, we present a novel optical microelectromechanical systems (MEMS) accelerometer sensor dedicated to space applications. An in-plane Fabry-Pérot (FP) microcavity (FPM) with two distributed Bragg reflectors (DBRs) is used to detect the acceleration. One of the DBR mirrors is attached to two suspended proof masses, allowing the FP gap to change while proof masses experience acceleration. Acceleration is then detected by measuring the spectral shift of the FPM. The optical accelerometer presented here uses silicon strip waveguides integrated with MEMS on a single silicon-on-insulator wafer, making it compact and robust. All of the device components are fabricated using one single fabrication step. Immunity to electromagnetic interference, high sensitivity and resolution capability, integrability, reliability, low cross-sensitivity, simple fabrication, and possibility of having two- and three-axis sensitivities are numerous advantages of our sensor compared to the conventional ones. The sensor performance demonstrated a 90-nm/g sensitivity and 111-μg resolution and better than 250-mg dynamic range. |
doi_str_mv | 10.1109/JMEMS.2012.2211577 |
format | article |
fullrecord | <record><control><sourceid>pascalfrancis_ieee_</sourceid><recordid>TN_cdi_pascalfrancis_primary_26711434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6287537</ieee_id><sourcerecordid>26711434</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-7ed965c2164e34a780a2f033bafd7cd9a79f6d7bbe7334608968fc0200e57e7c3</originalsourceid><addsrcrecordid>eNo9UM1KAzEQXkRBrb6AXnLxmJqf3c3usdaqlZYKKh6XaXa2jWyzJUkFH8IH8Tl8MVNbhIEZ5vsZ5kuSC876nLPy-nE6mj73BeOiLwTnmVIHyQkvU04Zz4rDOLNMURWB4-TU-3fGeJoW-UnydYveLCwBW5NbXHXWBwfBdJZ0TVySsaVPLVgkz6Y1urM01tj6TQuhc2S2DkZDS7bXyR3M3Sd9-vl2XaA34LEmA62xRdetMKCLXgEX0T0CbyYsyXAJ1mJL3uADFxtToz9LjhpoPZ7vey95vRu9DB_oZHY_Hg4mVItSBaqwLvNMC56nKFNQBQPRMCnn0NRK1yWosslrNZ-jkjLNWVHmRaOZYAwzhUrLXiJ2vtp13jtsqrUzK3CfFWfVNtDqL9BqG2i1DzSKrnaiNfj4dOPAauP_lSJXnKcyjbzLHc8g4j-ci0JlUslfHjSBTw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Design and Demonstration of an In-Plane Silicon-on-Insulator Optical MEMS Fabry-Pérot-Based Accelerometer Integrated With Channel Waveguides</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Zandi, K. ; Belanger, J. A. ; Peter, Y-A</creator><creatorcontrib>Zandi, K. ; Belanger, J. A. ; Peter, Y-A</creatorcontrib><description>In this paper, we present a novel optical microelectromechanical systems (MEMS) accelerometer sensor dedicated to space applications. An in-plane Fabry-Pérot (FP) microcavity (FPM) with two distributed Bragg reflectors (DBRs) is used to detect the acceleration. One of the DBR mirrors is attached to two suspended proof masses, allowing the FP gap to change while proof masses experience acceleration. Acceleration is then detected by measuring the spectral shift of the FPM. The optical accelerometer presented here uses silicon strip waveguides integrated with MEMS on a single silicon-on-insulator wafer, making it compact and robust. All of the device components are fabricated using one single fabrication step. Immunity to electromagnetic interference, high sensitivity and resolution capability, integrability, reliability, low cross-sensitivity, simple fabrication, and possibility of having two- and three-axis sensitivities are numerous advantages of our sensor compared to the conventional ones. The sensor performance demonstrated a 90-nm/g sensitivity and 111-μg resolution and better than 250-mg dynamic range.</description><identifier>ISSN: 1057-7157</identifier><identifier>EISSN: 1941-0158</identifier><identifier>DOI: 10.1109/JMEMS.2012.2211577</identifier><identifier>CODEN: JMIYET</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Acceleration ; Accelerometers ; Applied sciences ; Distributed Bragg reflector (DBR) ; Distributed Bragg reflectors ; Electronics ; Exact sciences and technology ; Fabry-Pérot (FP) ; Fundamental areas of phenomenology (including applications) ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Measurements common to several branches of physics and astronomy ; Mechanical instruments, equipment and techniques ; Metrology, measurements and laboratory procedures ; Micro- and nanoelectromechanical devices (mems/nems) ; Micro- and nanooptical devices ; Micromechanical devices and systems ; optical accelerometer ; Optical device fabrication ; Optical sensors ; Optical waveguides ; Optics ; Physics ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; silicon-on-insulator (SOI) ; Velocity, acceleration and rotation ; waveguides</subject><ispartof>Journal of microelectromechanical systems, 2012-12, Vol.21 (6), p.1464-1470</ispartof><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-7ed965c2164e34a780a2f033bafd7cd9a79f6d7bbe7334608968fc0200e57e7c3</citedby><cites>FETCH-LOGICAL-c297t-7ed965c2164e34a780a2f033bafd7cd9a79f6d7bbe7334608968fc0200e57e7c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6287537$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,54777</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26711434$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zandi, K.</creatorcontrib><creatorcontrib>Belanger, J. A.</creatorcontrib><creatorcontrib>Peter, Y-A</creatorcontrib><title>Design and Demonstration of an In-Plane Silicon-on-Insulator Optical MEMS Fabry-Pérot-Based Accelerometer Integrated With Channel Waveguides</title><title>Journal of microelectromechanical systems</title><addtitle>JMEMS</addtitle><description>In this paper, we present a novel optical microelectromechanical systems (MEMS) accelerometer sensor dedicated to space applications. An in-plane Fabry-Pérot (FP) microcavity (FPM) with two distributed Bragg reflectors (DBRs) is used to detect the acceleration. One of the DBR mirrors is attached to two suspended proof masses, allowing the FP gap to change while proof masses experience acceleration. Acceleration is then detected by measuring the spectral shift of the FPM. The optical accelerometer presented here uses silicon strip waveguides integrated with MEMS on a single silicon-on-insulator wafer, making it compact and robust. All of the device components are fabricated using one single fabrication step. Immunity to electromagnetic interference, high sensitivity and resolution capability, integrability, reliability, low cross-sensitivity, simple fabrication, and possibility of having two- and three-axis sensitivities are numerous advantages of our sensor compared to the conventional ones. The sensor performance demonstrated a 90-nm/g sensitivity and 111-μg resolution and better than 250-mg dynamic range.</description><subject>Acceleration</subject><subject>Accelerometers</subject><subject>Applied sciences</subject><subject>Distributed Bragg reflector (DBR)</subject><subject>Distributed Bragg reflectors</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Fabry-Pérot (FP)</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Measurements common to several branches of physics and astronomy</subject><subject>Mechanical instruments, equipment and techniques</subject><subject>Metrology, measurements and laboratory procedures</subject><subject>Micro- and nanoelectromechanical devices (mems/nems)</subject><subject>Micro- and nanooptical devices</subject><subject>Micromechanical devices and systems</subject><subject>optical accelerometer</subject><subject>Optical device fabrication</subject><subject>Optical sensors</subject><subject>Optical waveguides</subject><subject>Optics</subject><subject>Physics</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>silicon-on-insulator (SOI)</subject><subject>Velocity, acceleration and rotation</subject><subject>waveguides</subject><issn>1057-7157</issn><issn>1941-0158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNo9UM1KAzEQXkRBrb6AXnLxmJqf3c3usdaqlZYKKh6XaXa2jWyzJUkFH8IH8Tl8MVNbhIEZ5vsZ5kuSC876nLPy-nE6mj73BeOiLwTnmVIHyQkvU04Zz4rDOLNMURWB4-TU-3fGeJoW-UnydYveLCwBW5NbXHXWBwfBdJZ0TVySsaVPLVgkz6Y1urM01tj6TQuhc2S2DkZDS7bXyR3M3Sd9-vl2XaA34LEmA62xRdetMKCLXgEX0T0CbyYsyXAJ1mJL3uADFxtToz9LjhpoPZ7vey95vRu9DB_oZHY_Hg4mVItSBaqwLvNMC56nKFNQBQPRMCnn0NRK1yWosslrNZ-jkjLNWVHmRaOZYAwzhUrLXiJ2vtp13jtsqrUzK3CfFWfVNtDqL9BqG2i1DzSKrnaiNfj4dOPAauP_lSJXnKcyjbzLHc8g4j-ci0JlUslfHjSBTw</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Zandi, K.</creator><creator>Belanger, J. A.</creator><creator>Peter, Y-A</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20121201</creationdate><title>Design and Demonstration of an In-Plane Silicon-on-Insulator Optical MEMS Fabry-Pérot-Based Accelerometer Integrated With Channel Waveguides</title><author>Zandi, K. ; Belanger, J. A. ; Peter, Y-A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-7ed965c2164e34a780a2f033bafd7cd9a79f6d7bbe7334608968fc0200e57e7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acceleration</topic><topic>Accelerometers</topic><topic>Applied sciences</topic><topic>Distributed Bragg reflector (DBR)</topic><topic>Distributed Bragg reflectors</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Fabry-Pérot (FP)</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Measurements common to several branches of physics and astronomy</topic><topic>Mechanical instruments, equipment and techniques</topic><topic>Metrology, measurements and laboratory procedures</topic><topic>Micro- and nanoelectromechanical devices (mems/nems)</topic><topic>Micro- and nanooptical devices</topic><topic>Micromechanical devices and systems</topic><topic>optical accelerometer</topic><topic>Optical device fabrication</topic><topic>Optical sensors</topic><topic>Optical waveguides</topic><topic>Optics</topic><topic>Physics</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>silicon-on-insulator (SOI)</topic><topic>Velocity, acceleration and rotation</topic><topic>waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zandi, K.</creatorcontrib><creatorcontrib>Belanger, J. A.</creatorcontrib><creatorcontrib>Peter, Y-A</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of microelectromechanical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zandi, K.</au><au>Belanger, J. A.</au><au>Peter, Y-A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and Demonstration of an In-Plane Silicon-on-Insulator Optical MEMS Fabry-Pérot-Based Accelerometer Integrated With Channel Waveguides</atitle><jtitle>Journal of microelectromechanical systems</jtitle><stitle>JMEMS</stitle><date>2012-12-01</date><risdate>2012</risdate><volume>21</volume><issue>6</issue><spage>1464</spage><epage>1470</epage><pages>1464-1470</pages><issn>1057-7157</issn><eissn>1941-0158</eissn><coden>JMIYET</coden><abstract>In this paper, we present a novel optical microelectromechanical systems (MEMS) accelerometer sensor dedicated to space applications. An in-plane Fabry-Pérot (FP) microcavity (FPM) with two distributed Bragg reflectors (DBRs) is used to detect the acceleration. One of the DBR mirrors is attached to two suspended proof masses, allowing the FP gap to change while proof masses experience acceleration. Acceleration is then detected by measuring the spectral shift of the FPM. The optical accelerometer presented here uses silicon strip waveguides integrated with MEMS on a single silicon-on-insulator wafer, making it compact and robust. All of the device components are fabricated using one single fabrication step. Immunity to electromagnetic interference, high sensitivity and resolution capability, integrability, reliability, low cross-sensitivity, simple fabrication, and possibility of having two- and three-axis sensitivities are numerous advantages of our sensor compared to the conventional ones. The sensor performance demonstrated a 90-nm/g sensitivity and 111-μg resolution and better than 250-mg dynamic range.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/JMEMS.2012.2211577</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1057-7157 |
ispartof | Journal of microelectromechanical systems, 2012-12, Vol.21 (6), p.1464-1470 |
issn | 1057-7157 1941-0158 |
language | eng |
recordid | cdi_pascalfrancis_primary_26711434 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Acceleration Accelerometers Applied sciences Distributed Bragg reflector (DBR) Distributed Bragg reflectors Electronics Exact sciences and technology Fabry-Pérot (FP) Fundamental areas of phenomenology (including applications) Instruments, apparatus, components and techniques common to several branches of physics and astronomy Measurements common to several branches of physics and astronomy Mechanical instruments, equipment and techniques Metrology, measurements and laboratory procedures Micro- and nanoelectromechanical devices (mems/nems) Micro- and nanooptical devices Micromechanical devices and systems optical accelerometer Optical device fabrication Optical sensors Optical waveguides Optics Physics Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices silicon-on-insulator (SOI) Velocity, acceleration and rotation waveguides |
title | Design and Demonstration of an In-Plane Silicon-on-Insulator Optical MEMS Fabry-Pérot-Based Accelerometer Integrated With Channel Waveguides |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T14%3A00%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20Demonstration%20of%20an%20In-Plane%20Silicon-on-Insulator%20Optical%20MEMS%20Fabry-P%C3%A9rot-Based%20Accelerometer%20Integrated%20With%20Channel%20Waveguides&rft.jtitle=Journal%20of%20microelectromechanical%20systems&rft.au=Zandi,%20K.&rft.date=2012-12-01&rft.volume=21&rft.issue=6&rft.spage=1464&rft.epage=1470&rft.pages=1464-1470&rft.issn=1057-7157&rft.eissn=1941-0158&rft.coden=JMIYET&rft_id=info:doi/10.1109/JMEMS.2012.2211577&rft_dat=%3Cpascalfrancis_ieee_%3E26711434%3C/pascalfrancis_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c297t-7ed965c2164e34a780a2f033bafd7cd9a79f6d7bbe7334608968fc0200e57e7c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6287537&rfr_iscdi=true |