Loading…

Design and Demonstration of an In-Plane Silicon-on-Insulator Optical MEMS Fabry-Pérot-Based Accelerometer Integrated With Channel Waveguides

In this paper, we present a novel optical microelectromechanical systems (MEMS) accelerometer sensor dedicated to space applications. An in-plane Fabry-Pérot (FP) microcavity (FPM) with two distributed Bragg reflectors (DBRs) is used to detect the acceleration. One of the DBR mirrors is attached to...

Full description

Saved in:
Bibliographic Details
Published in:Journal of microelectromechanical systems 2012-12, Vol.21 (6), p.1464-1470
Main Authors: Zandi, K., Belanger, J. A., Peter, Y-A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c297t-7ed965c2164e34a780a2f033bafd7cd9a79f6d7bbe7334608968fc0200e57e7c3
cites cdi_FETCH-LOGICAL-c297t-7ed965c2164e34a780a2f033bafd7cd9a79f6d7bbe7334608968fc0200e57e7c3
container_end_page 1470
container_issue 6
container_start_page 1464
container_title Journal of microelectromechanical systems
container_volume 21
creator Zandi, K.
Belanger, J. A.
Peter, Y-A
description In this paper, we present a novel optical microelectromechanical systems (MEMS) accelerometer sensor dedicated to space applications. An in-plane Fabry-Pérot (FP) microcavity (FPM) with two distributed Bragg reflectors (DBRs) is used to detect the acceleration. One of the DBR mirrors is attached to two suspended proof masses, allowing the FP gap to change while proof masses experience acceleration. Acceleration is then detected by measuring the spectral shift of the FPM. The optical accelerometer presented here uses silicon strip waveguides integrated with MEMS on a single silicon-on-insulator wafer, making it compact and robust. All of the device components are fabricated using one single fabrication step. Immunity to electromagnetic interference, high sensitivity and resolution capability, integrability, reliability, low cross-sensitivity, simple fabrication, and possibility of having two- and three-axis sensitivities are numerous advantages of our sensor compared to the conventional ones. The sensor performance demonstrated a 90-nm/g sensitivity and 111-μg resolution and better than 250-mg dynamic range.
doi_str_mv 10.1109/JMEMS.2012.2211577
format article
fullrecord <record><control><sourceid>pascalfrancis_ieee_</sourceid><recordid>TN_cdi_pascalfrancis_primary_26711434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6287537</ieee_id><sourcerecordid>26711434</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-7ed965c2164e34a780a2f033bafd7cd9a79f6d7bbe7334608968fc0200e57e7c3</originalsourceid><addsrcrecordid>eNo9UM1KAzEQXkRBrb6AXnLxmJqf3c3usdaqlZYKKh6XaXa2jWyzJUkFH8IH8Tl8MVNbhIEZ5vsZ5kuSC876nLPy-nE6mj73BeOiLwTnmVIHyQkvU04Zz4rDOLNMURWB4-TU-3fGeJoW-UnydYveLCwBW5NbXHXWBwfBdJZ0TVySsaVPLVgkz6Y1urM01tj6TQuhc2S2DkZDS7bXyR3M3Sd9-vl2XaA34LEmA62xRdetMKCLXgEX0T0CbyYsyXAJ1mJL3uADFxtToz9LjhpoPZ7vey95vRu9DB_oZHY_Hg4mVItSBaqwLvNMC56nKFNQBQPRMCnn0NRK1yWosslrNZ-jkjLNWVHmRaOZYAwzhUrLXiJ2vtp13jtsqrUzK3CfFWfVNtDqL9BqG2i1DzSKrnaiNfj4dOPAauP_lSJXnKcyjbzLHc8g4j-ci0JlUslfHjSBTw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Design and Demonstration of an In-Plane Silicon-on-Insulator Optical MEMS Fabry-Pérot-Based Accelerometer Integrated With Channel Waveguides</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Zandi, K. ; Belanger, J. A. ; Peter, Y-A</creator><creatorcontrib>Zandi, K. ; Belanger, J. A. ; Peter, Y-A</creatorcontrib><description>In this paper, we present a novel optical microelectromechanical systems (MEMS) accelerometer sensor dedicated to space applications. An in-plane Fabry-Pérot (FP) microcavity (FPM) with two distributed Bragg reflectors (DBRs) is used to detect the acceleration. One of the DBR mirrors is attached to two suspended proof masses, allowing the FP gap to change while proof masses experience acceleration. Acceleration is then detected by measuring the spectral shift of the FPM. The optical accelerometer presented here uses silicon strip waveguides integrated with MEMS on a single silicon-on-insulator wafer, making it compact and robust. All of the device components are fabricated using one single fabrication step. Immunity to electromagnetic interference, high sensitivity and resolution capability, integrability, reliability, low cross-sensitivity, simple fabrication, and possibility of having two- and three-axis sensitivities are numerous advantages of our sensor compared to the conventional ones. The sensor performance demonstrated a 90-nm/g sensitivity and 111-μg resolution and better than 250-mg dynamic range.</description><identifier>ISSN: 1057-7157</identifier><identifier>EISSN: 1941-0158</identifier><identifier>DOI: 10.1109/JMEMS.2012.2211577</identifier><identifier>CODEN: JMIYET</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Acceleration ; Accelerometers ; Applied sciences ; Distributed Bragg reflector (DBR) ; Distributed Bragg reflectors ; Electronics ; Exact sciences and technology ; Fabry-Pérot (FP) ; Fundamental areas of phenomenology (including applications) ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Measurements common to several branches of physics and astronomy ; Mechanical instruments, equipment and techniques ; Metrology, measurements and laboratory procedures ; Micro- and nanoelectromechanical devices (mems/nems) ; Micro- and nanooptical devices ; Micromechanical devices and systems ; optical accelerometer ; Optical device fabrication ; Optical sensors ; Optical waveguides ; Optics ; Physics ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; silicon-on-insulator (SOI) ; Velocity, acceleration and rotation ; waveguides</subject><ispartof>Journal of microelectromechanical systems, 2012-12, Vol.21 (6), p.1464-1470</ispartof><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-7ed965c2164e34a780a2f033bafd7cd9a79f6d7bbe7334608968fc0200e57e7c3</citedby><cites>FETCH-LOGICAL-c297t-7ed965c2164e34a780a2f033bafd7cd9a79f6d7bbe7334608968fc0200e57e7c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6287537$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,54777</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26711434$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zandi, K.</creatorcontrib><creatorcontrib>Belanger, J. A.</creatorcontrib><creatorcontrib>Peter, Y-A</creatorcontrib><title>Design and Demonstration of an In-Plane Silicon-on-Insulator Optical MEMS Fabry-Pérot-Based Accelerometer Integrated With Channel Waveguides</title><title>Journal of microelectromechanical systems</title><addtitle>JMEMS</addtitle><description>In this paper, we present a novel optical microelectromechanical systems (MEMS) accelerometer sensor dedicated to space applications. An in-plane Fabry-Pérot (FP) microcavity (FPM) with two distributed Bragg reflectors (DBRs) is used to detect the acceleration. One of the DBR mirrors is attached to two suspended proof masses, allowing the FP gap to change while proof masses experience acceleration. Acceleration is then detected by measuring the spectral shift of the FPM. The optical accelerometer presented here uses silicon strip waveguides integrated with MEMS on a single silicon-on-insulator wafer, making it compact and robust. All of the device components are fabricated using one single fabrication step. Immunity to electromagnetic interference, high sensitivity and resolution capability, integrability, reliability, low cross-sensitivity, simple fabrication, and possibility of having two- and three-axis sensitivities are numerous advantages of our sensor compared to the conventional ones. The sensor performance demonstrated a 90-nm/g sensitivity and 111-μg resolution and better than 250-mg dynamic range.</description><subject>Acceleration</subject><subject>Accelerometers</subject><subject>Applied sciences</subject><subject>Distributed Bragg reflector (DBR)</subject><subject>Distributed Bragg reflectors</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Fabry-Pérot (FP)</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Measurements common to several branches of physics and astronomy</subject><subject>Mechanical instruments, equipment and techniques</subject><subject>Metrology, measurements and laboratory procedures</subject><subject>Micro- and nanoelectromechanical devices (mems/nems)</subject><subject>Micro- and nanooptical devices</subject><subject>Micromechanical devices and systems</subject><subject>optical accelerometer</subject><subject>Optical device fabrication</subject><subject>Optical sensors</subject><subject>Optical waveguides</subject><subject>Optics</subject><subject>Physics</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>silicon-on-insulator (SOI)</subject><subject>Velocity, acceleration and rotation</subject><subject>waveguides</subject><issn>1057-7157</issn><issn>1941-0158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNo9UM1KAzEQXkRBrb6AXnLxmJqf3c3usdaqlZYKKh6XaXa2jWyzJUkFH8IH8Tl8MVNbhIEZ5vsZ5kuSC876nLPy-nE6mj73BeOiLwTnmVIHyQkvU04Zz4rDOLNMURWB4-TU-3fGeJoW-UnydYveLCwBW5NbXHXWBwfBdJZ0TVySsaVPLVgkz6Y1urM01tj6TQuhc2S2DkZDS7bXyR3M3Sd9-vl2XaA34LEmA62xRdetMKCLXgEX0T0CbyYsyXAJ1mJL3uADFxtToz9LjhpoPZ7vey95vRu9DB_oZHY_Hg4mVItSBaqwLvNMC56nKFNQBQPRMCnn0NRK1yWosslrNZ-jkjLNWVHmRaOZYAwzhUrLXiJ2vtp13jtsqrUzK3CfFWfVNtDqL9BqG2i1DzSKrnaiNfj4dOPAauP_lSJXnKcyjbzLHc8g4j-ci0JlUslfHjSBTw</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Zandi, K.</creator><creator>Belanger, J. A.</creator><creator>Peter, Y-A</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20121201</creationdate><title>Design and Demonstration of an In-Plane Silicon-on-Insulator Optical MEMS Fabry-Pérot-Based Accelerometer Integrated With Channel Waveguides</title><author>Zandi, K. ; Belanger, J. A. ; Peter, Y-A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-7ed965c2164e34a780a2f033bafd7cd9a79f6d7bbe7334608968fc0200e57e7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acceleration</topic><topic>Accelerometers</topic><topic>Applied sciences</topic><topic>Distributed Bragg reflector (DBR)</topic><topic>Distributed Bragg reflectors</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Fabry-Pérot (FP)</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Measurements common to several branches of physics and astronomy</topic><topic>Mechanical instruments, equipment and techniques</topic><topic>Metrology, measurements and laboratory procedures</topic><topic>Micro- and nanoelectromechanical devices (mems/nems)</topic><topic>Micro- and nanooptical devices</topic><topic>Micromechanical devices and systems</topic><topic>optical accelerometer</topic><topic>Optical device fabrication</topic><topic>Optical sensors</topic><topic>Optical waveguides</topic><topic>Optics</topic><topic>Physics</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>silicon-on-insulator (SOI)</topic><topic>Velocity, acceleration and rotation</topic><topic>waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zandi, K.</creatorcontrib><creatorcontrib>Belanger, J. A.</creatorcontrib><creatorcontrib>Peter, Y-A</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of microelectromechanical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zandi, K.</au><au>Belanger, J. A.</au><au>Peter, Y-A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and Demonstration of an In-Plane Silicon-on-Insulator Optical MEMS Fabry-Pérot-Based Accelerometer Integrated With Channel Waveguides</atitle><jtitle>Journal of microelectromechanical systems</jtitle><stitle>JMEMS</stitle><date>2012-12-01</date><risdate>2012</risdate><volume>21</volume><issue>6</issue><spage>1464</spage><epage>1470</epage><pages>1464-1470</pages><issn>1057-7157</issn><eissn>1941-0158</eissn><coden>JMIYET</coden><abstract>In this paper, we present a novel optical microelectromechanical systems (MEMS) accelerometer sensor dedicated to space applications. An in-plane Fabry-Pérot (FP) microcavity (FPM) with two distributed Bragg reflectors (DBRs) is used to detect the acceleration. One of the DBR mirrors is attached to two suspended proof masses, allowing the FP gap to change while proof masses experience acceleration. Acceleration is then detected by measuring the spectral shift of the FPM. The optical accelerometer presented here uses silicon strip waveguides integrated with MEMS on a single silicon-on-insulator wafer, making it compact and robust. All of the device components are fabricated using one single fabrication step. Immunity to electromagnetic interference, high sensitivity and resolution capability, integrability, reliability, low cross-sensitivity, simple fabrication, and possibility of having two- and three-axis sensitivities are numerous advantages of our sensor compared to the conventional ones. The sensor performance demonstrated a 90-nm/g sensitivity and 111-μg resolution and better than 250-mg dynamic range.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/JMEMS.2012.2211577</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1057-7157
ispartof Journal of microelectromechanical systems, 2012-12, Vol.21 (6), p.1464-1470
issn 1057-7157
1941-0158
language eng
recordid cdi_pascalfrancis_primary_26711434
source IEEE Electronic Library (IEL) Journals
subjects Acceleration
Accelerometers
Applied sciences
Distributed Bragg reflector (DBR)
Distributed Bragg reflectors
Electronics
Exact sciences and technology
Fabry-Pérot (FP)
Fundamental areas of phenomenology (including applications)
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
Measurements common to several branches of physics and astronomy
Mechanical instruments, equipment and techniques
Metrology, measurements and laboratory procedures
Micro- and nanoelectromechanical devices (mems/nems)
Micro- and nanooptical devices
Micromechanical devices and systems
optical accelerometer
Optical device fabrication
Optical sensors
Optical waveguides
Optics
Physics
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
silicon-on-insulator (SOI)
Velocity, acceleration and rotation
waveguides
title Design and Demonstration of an In-Plane Silicon-on-Insulator Optical MEMS Fabry-Pérot-Based Accelerometer Integrated With Channel Waveguides
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T14%3A00%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20Demonstration%20of%20an%20In-Plane%20Silicon-on-Insulator%20Optical%20MEMS%20Fabry-P%C3%A9rot-Based%20Accelerometer%20Integrated%20With%20Channel%20Waveguides&rft.jtitle=Journal%20of%20microelectromechanical%20systems&rft.au=Zandi,%20K.&rft.date=2012-12-01&rft.volume=21&rft.issue=6&rft.spage=1464&rft.epage=1470&rft.pages=1464-1470&rft.issn=1057-7157&rft.eissn=1941-0158&rft.coden=JMIYET&rft_id=info:doi/10.1109/JMEMS.2012.2211577&rft_dat=%3Cpascalfrancis_ieee_%3E26711434%3C/pascalfrancis_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c297t-7ed965c2164e34a780a2f033bafd7cd9a79f6d7bbe7334608968fc0200e57e7c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6287537&rfr_iscdi=true