Loading…
Using Coding-Based Ensemble Learning to Improve Software Defect Prediction
Using classification methods to predict software defect proneness with static code attributes has attracted a great deal of attention. The class-imbalance characteristic of software defect data makes the prediction much difficult; thus, a number of methods have been employed to address this problem....
Saved in:
Published in: | IEEE transactions on human-machine systems 2012-11, Vol.42 (6), p.1806-1817 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Using classification methods to predict software defect proneness with static code attributes has attracted a great deal of attention. The class-imbalance characteristic of software defect data makes the prediction much difficult; thus, a number of methods have been employed to address this problem. However, these conventional methods, such as sampling, cost-sensitive learning, Bagging, and Boosting, could suffer from the loss of important information, unexpected mistakes, and overfitting because they alter the original data distribution. This paper presents a novel method that first converts the imbalanced binary-class data into balanced multiclass data and then builds a defect predictor on the multiclass data with a specific coding scheme. A thorough experiment with four different types of classification algorithms, three data coding schemes, and six conventional imbalance data-handling methods was conducted over the 14 NASA datasets. The experimental results show that the proposed method with a one-against-one coding scheme is averagely superior to the conventional methods. |
---|---|
ISSN: | 1094-6977 2168-2291 1558-2442 2168-2305 |
DOI: | 10.1109/TSMCC.2012.2226152 |