Loading…
Towards in vivo biosensors for low-cost protein sensing
In vivo biosensing requires stable transistor operation in high-salt concentration bodily fluids while exhibiting impermeability to mobile alkali ions that would otherwise render the metal-oxide-semiconductor (MOS) threshold voltage to drift. Metal oxide semiconductor capacitor structures using Al2O...
Saved in:
Published in: | Electronics letters 2013-03, Vol.49 (7), p.450-451 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In vivo biosensing requires stable transistor operation in high-salt concentration bodily fluids while exhibiting impermeability to mobile alkali ions that would otherwise render the metal-oxide-semiconductor (MOS) threshold voltage to drift. Metal oxide semiconductor capacitor structures using Al2O3 as the gate dielectric were soaked in a sterile physiological buffer solution (PBS) up to 24 hours and for thicknesses from 100 to 10 nm. The triangular voltage sweep technique characterised alkali ion penetration, and measured no detectable alkali ions for the Al2O3 capacitors. By contrast, the dose of alkali ions in silicon dioxide MOS capacitors steadily increased with increasing soak times in the PBS solution. |
---|---|
ISSN: | 0013-5194 1350-911X 1350-911X |
DOI: | 10.1049/el.2012.4283 |