Loading…

Effect of Al2O3 Recombination Barrier Layers Deposited by Atomic Layer Deposition in Solid-State CdS Quantum Dot-Sensitized Solar Cells

Despite the promise of quantum dots (QDs) as a light-absorbing material to replace the dye in dye-sensitized solar cells, quantum dot-sensitized solar cell (QDSSC) efficiencies remain low, due in part to high rates of recombination. In this article, we demonstrate that ultrathin recombination barrie...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physical chemistry. C 2013-03, Vol.117 (11), p.5584-5592
Main Authors: Roelofs, Katherine E, Brennan, Thomas P, Dominguez, Juan C, Bailie, Colin D, Margulis, George Y, Hoke, Eric T, McGehee, Michael D, Bent, Stacey F
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 5592
container_issue 11
container_start_page 5584
container_title Journal of physical chemistry. C
container_volume 117
creator Roelofs, Katherine E
Brennan, Thomas P
Dominguez, Juan C
Bailie, Colin D
Margulis, George Y
Hoke, Eric T
McGehee, Michael D
Bent, Stacey F
description Despite the promise of quantum dots (QDs) as a light-absorbing material to replace the dye in dye-sensitized solar cells, quantum dot-sensitized solar cell (QDSSC) efficiencies remain low, due in part to high rates of recombination. In this article, we demonstrate that ultrathin recombination barrier layers of Al2O3 deposited by atomic layer deposition can improve the performance of cadmium sulfide (CdS) quantum dot-sensitized solar cells with spiro-OMeTAD as the solid-state hole transport material. We explored depositing the Al2O3 barrier layers either before or after the QDs, resulting in TiO2/Al2O3/QD and TiO2/QD/Al2O3 configurations. The effects of barrier layer configuration and thickness were tracked through current–voltage measurements of device performance and transient photovoltage measurements of electron lifetimes. The Al2O3 layers were found to suppress dark current and increase electron lifetimes with increasing Al2O3 thickness in both configurations. For thin barrier layers, gains in open-circuit voltage and concomitant increases in efficiency were observed, although at greater thicknesses, losses in photocurrent caused net decreases in efficiency. A close comparison of the electron lifetimes in TiO2 in the TiO2/Al2O3/QD and TiO2/QD/Al2O3 configurations suggests that electron transfer from TiO2 to spiro-OMeTAD is a major source of recombination in ss-QDSSCs, though recombination of TiO2 electrons with oxidized QDs can also limit electron lifetimes, particularly if the regeneration of oxidized QDs is hindered by a too-thick coating of the barrier layer.
doi_str_mv 10.1021/jp311846r
format article
fullrecord <record><control><sourceid>acs_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_27211610</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b019303572</sourcerecordid><originalsourceid>FETCH-LOGICAL-a308t-f6196f74fbf25e5abc3df5e1a34e5efffd4a679c16033d0d66ad5b01e13aeeef3</originalsourceid><addsrcrecordid>eNpFkM1OwzAQhC0EEqVw4A184Riw49hpj6UtP1KlCgLnaGOvJVdJHNnuobwAr02rQjnNSvPtaDSE3HJ2z1nOHzaD4HxSqHBGRnwq8qwspDw_3UV5Sa5i3DAmBeNiRL6X1qJO1Fs6a_O1oO-ofde4HpLzPX2EEBwGuoIdhkgXOPjoEhra7Ogs-c7po_XnHH5cTyvfOpNVCRLSuano2xb6tO3owqeswv4Afu1D9hgEOse2jdfkwkIb8eZXx-Tzafkxf8lW6-fX-WyVgWCTlFnFp8qWhW1sLlFCo4WxEjmIAiVaa00BqpxqrpgQhhmlwMiGceQCENGKMbk75g4QNbQ2QK9drIfgOgi7Oi9zzhVn_xzoWG_8NvT7VjVn9WHl-rSy-AF0tHEe</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Effect of Al2O3 Recombination Barrier Layers Deposited by Atomic Layer Deposition in Solid-State CdS Quantum Dot-Sensitized Solar Cells</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Roelofs, Katherine E ; Brennan, Thomas P ; Dominguez, Juan C ; Bailie, Colin D ; Margulis, George Y ; Hoke, Eric T ; McGehee, Michael D ; Bent, Stacey F</creator><creatorcontrib>Roelofs, Katherine E ; Brennan, Thomas P ; Dominguez, Juan C ; Bailie, Colin D ; Margulis, George Y ; Hoke, Eric T ; McGehee, Michael D ; Bent, Stacey F</creatorcontrib><description>Despite the promise of quantum dots (QDs) as a light-absorbing material to replace the dye in dye-sensitized solar cells, quantum dot-sensitized solar cell (QDSSC) efficiencies remain low, due in part to high rates of recombination. In this article, we demonstrate that ultrathin recombination barrier layers of Al2O3 deposited by atomic layer deposition can improve the performance of cadmium sulfide (CdS) quantum dot-sensitized solar cells with spiro-OMeTAD as the solid-state hole transport material. We explored depositing the Al2O3 barrier layers either before or after the QDs, resulting in TiO2/Al2O3/QD and TiO2/QD/Al2O3 configurations. The effects of barrier layer configuration and thickness were tracked through current–voltage measurements of device performance and transient photovoltage measurements of electron lifetimes. The Al2O3 layers were found to suppress dark current and increase electron lifetimes with increasing Al2O3 thickness in both configurations. For thin barrier layers, gains in open-circuit voltage and concomitant increases in efficiency were observed, although at greater thicknesses, losses in photocurrent caused net decreases in efficiency. A close comparison of the electron lifetimes in TiO2 in the TiO2/Al2O3/QD and TiO2/QD/Al2O3 configurations suggests that electron transfer from TiO2 to spiro-OMeTAD is a major source of recombination in ss-QDSSCs, though recombination of TiO2 electrons with oxidized QDs can also limit electron lifetimes, particularly if the regeneration of oxidized QDs is hindered by a too-thick coating of the barrier layer.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp311846r</identifier><language>eng</language><publisher>Columbus, OH: American Chemical Society</publisher><subject>Applied sciences ; Energy ; Exact sciences and technology ; Natural energy ; Photovoltaic conversion ; Solar cells. Photoelectrochemical cells ; Solar energy</subject><ispartof>Journal of physical chemistry. C, 2013-03, Vol.117 (11), p.5584-5592</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27211610$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Roelofs, Katherine E</creatorcontrib><creatorcontrib>Brennan, Thomas P</creatorcontrib><creatorcontrib>Dominguez, Juan C</creatorcontrib><creatorcontrib>Bailie, Colin D</creatorcontrib><creatorcontrib>Margulis, George Y</creatorcontrib><creatorcontrib>Hoke, Eric T</creatorcontrib><creatorcontrib>McGehee, Michael D</creatorcontrib><creatorcontrib>Bent, Stacey F</creatorcontrib><title>Effect of Al2O3 Recombination Barrier Layers Deposited by Atomic Layer Deposition in Solid-State CdS Quantum Dot-Sensitized Solar Cells</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Despite the promise of quantum dots (QDs) as a light-absorbing material to replace the dye in dye-sensitized solar cells, quantum dot-sensitized solar cell (QDSSC) efficiencies remain low, due in part to high rates of recombination. In this article, we demonstrate that ultrathin recombination barrier layers of Al2O3 deposited by atomic layer deposition can improve the performance of cadmium sulfide (CdS) quantum dot-sensitized solar cells with spiro-OMeTAD as the solid-state hole transport material. We explored depositing the Al2O3 barrier layers either before or after the QDs, resulting in TiO2/Al2O3/QD and TiO2/QD/Al2O3 configurations. The effects of barrier layer configuration and thickness were tracked through current–voltage measurements of device performance and transient photovoltage measurements of electron lifetimes. The Al2O3 layers were found to suppress dark current and increase electron lifetimes with increasing Al2O3 thickness in both configurations. For thin barrier layers, gains in open-circuit voltage and concomitant increases in efficiency were observed, although at greater thicknesses, losses in photocurrent caused net decreases in efficiency. A close comparison of the electron lifetimes in TiO2 in the TiO2/Al2O3/QD and TiO2/QD/Al2O3 configurations suggests that electron transfer from TiO2 to spiro-OMeTAD is a major source of recombination in ss-QDSSCs, though recombination of TiO2 electrons with oxidized QDs can also limit electron lifetimes, particularly if the regeneration of oxidized QDs is hindered by a too-thick coating of the barrier layer.</description><subject>Applied sciences</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Natural energy</subject><subject>Photovoltaic conversion</subject><subject>Solar cells. Photoelectrochemical cells</subject><subject>Solar energy</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpFkM1OwzAQhC0EEqVw4A184Riw49hpj6UtP1KlCgLnaGOvJVdJHNnuobwAr02rQjnNSvPtaDSE3HJ2z1nOHzaD4HxSqHBGRnwq8qwspDw_3UV5Sa5i3DAmBeNiRL6X1qJO1Fs6a_O1oO-ofde4HpLzPX2EEBwGuoIdhkgXOPjoEhra7Ogs-c7po_XnHH5cTyvfOpNVCRLSuano2xb6tO3owqeswv4Afu1D9hgEOse2jdfkwkIb8eZXx-Tzafkxf8lW6-fX-WyVgWCTlFnFp8qWhW1sLlFCo4WxEjmIAiVaa00BqpxqrpgQhhmlwMiGceQCENGKMbk75g4QNbQ2QK9drIfgOgi7Oi9zzhVn_xzoWG_8NvT7VjVn9WHl-rSy-AF0tHEe</recordid><startdate>20130321</startdate><enddate>20130321</enddate><creator>Roelofs, Katherine E</creator><creator>Brennan, Thomas P</creator><creator>Dominguez, Juan C</creator><creator>Bailie, Colin D</creator><creator>Margulis, George Y</creator><creator>Hoke, Eric T</creator><creator>McGehee, Michael D</creator><creator>Bent, Stacey F</creator><general>American Chemical Society</general><scope>IQODW</scope></search><sort><creationdate>20130321</creationdate><title>Effect of Al2O3 Recombination Barrier Layers Deposited by Atomic Layer Deposition in Solid-State CdS Quantum Dot-Sensitized Solar Cells</title><author>Roelofs, Katherine E ; Brennan, Thomas P ; Dominguez, Juan C ; Bailie, Colin D ; Margulis, George Y ; Hoke, Eric T ; McGehee, Michael D ; Bent, Stacey F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a308t-f6196f74fbf25e5abc3df5e1a34e5efffd4a679c16033d0d66ad5b01e13aeeef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Natural energy</topic><topic>Photovoltaic conversion</topic><topic>Solar cells. Photoelectrochemical cells</topic><topic>Solar energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roelofs, Katherine E</creatorcontrib><creatorcontrib>Brennan, Thomas P</creatorcontrib><creatorcontrib>Dominguez, Juan C</creatorcontrib><creatorcontrib>Bailie, Colin D</creatorcontrib><creatorcontrib>Margulis, George Y</creatorcontrib><creatorcontrib>Hoke, Eric T</creatorcontrib><creatorcontrib>McGehee, Michael D</creatorcontrib><creatorcontrib>Bent, Stacey F</creatorcontrib><collection>Pascal-Francis</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roelofs, Katherine E</au><au>Brennan, Thomas P</au><au>Dominguez, Juan C</au><au>Bailie, Colin D</au><au>Margulis, George Y</au><au>Hoke, Eric T</au><au>McGehee, Michael D</au><au>Bent, Stacey F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Al2O3 Recombination Barrier Layers Deposited by Atomic Layer Deposition in Solid-State CdS Quantum Dot-Sensitized Solar Cells</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2013-03-21</date><risdate>2013</risdate><volume>117</volume><issue>11</issue><spage>5584</spage><epage>5592</epage><pages>5584-5592</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Despite the promise of quantum dots (QDs) as a light-absorbing material to replace the dye in dye-sensitized solar cells, quantum dot-sensitized solar cell (QDSSC) efficiencies remain low, due in part to high rates of recombination. In this article, we demonstrate that ultrathin recombination barrier layers of Al2O3 deposited by atomic layer deposition can improve the performance of cadmium sulfide (CdS) quantum dot-sensitized solar cells with spiro-OMeTAD as the solid-state hole transport material. We explored depositing the Al2O3 barrier layers either before or after the QDs, resulting in TiO2/Al2O3/QD and TiO2/QD/Al2O3 configurations. The effects of barrier layer configuration and thickness were tracked through current–voltage measurements of device performance and transient photovoltage measurements of electron lifetimes. The Al2O3 layers were found to suppress dark current and increase electron lifetimes with increasing Al2O3 thickness in both configurations. For thin barrier layers, gains in open-circuit voltage and concomitant increases in efficiency were observed, although at greater thicknesses, losses in photocurrent caused net decreases in efficiency. A close comparison of the electron lifetimes in TiO2 in the TiO2/Al2O3/QD and TiO2/QD/Al2O3 configurations suggests that electron transfer from TiO2 to spiro-OMeTAD is a major source of recombination in ss-QDSSCs, though recombination of TiO2 electrons with oxidized QDs can also limit electron lifetimes, particularly if the regeneration of oxidized QDs is hindered by a too-thick coating of the barrier layer.</abstract><cop>Columbus, OH</cop><pub>American Chemical Society</pub><doi>10.1021/jp311846r</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2013-03, Vol.117 (11), p.5584-5592
issn 1932-7447
1932-7455
language eng
recordid cdi_pascalfrancis_primary_27211610
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Applied sciences
Energy
Exact sciences and technology
Natural energy
Photovoltaic conversion
Solar cells. Photoelectrochemical cells
Solar energy
title Effect of Al2O3 Recombination Barrier Layers Deposited by Atomic Layer Deposition in Solid-State CdS Quantum Dot-Sensitized Solar Cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T16%3A20%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Al2O3%20Recombination%20Barrier%20Layers%20Deposited%20by%20Atomic%20Layer%20Deposition%20in%20Solid-State%20CdS%20Quantum%20Dot-Sensitized%20Solar%20Cells&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Roelofs,%20Katherine%20E&rft.date=2013-03-21&rft.volume=117&rft.issue=11&rft.spage=5584&rft.epage=5592&rft.pages=5584-5592&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp311846r&rft_dat=%3Cacs_pasca%3Eb019303572%3C/acs_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a308t-f6196f74fbf25e5abc3df5e1a34e5efffd4a679c16033d0d66ad5b01e13aeeef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true