Loading…

Domain Transformation-Based Efficient Cost Aggregation for Local Stereo Matching

Binocular stereo matching is one of the most important algorithms in the field of computer vision. Adaptive support-weight approaches, the current state-of-the-art local methods, produce results comparable to those generated by global methods. However, excessive time consumption is the main problem...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on circuits and systems for video technology 2013-07, Vol.23 (7), p.1119-1130
Main Authors: Pham, Cuong Cao, Jeon, Jae Wook
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c363t-a4d382782d8d8af149d9e131f79733ea23a9efaf72fc1278e1eb7201e76da4d03
cites cdi_FETCH-LOGICAL-c363t-a4d382782d8d8af149d9e131f79733ea23a9efaf72fc1278e1eb7201e76da4d03
container_end_page 1130
container_issue 7
container_start_page 1119
container_title IEEE transactions on circuits and systems for video technology
container_volume 23
creator Pham, Cuong Cao
Jeon, Jae Wook
description Binocular stereo matching is one of the most important algorithms in the field of computer vision. Adaptive support-weight approaches, the current state-of-the-art local methods, produce results comparable to those generated by global methods. However, excessive time consumption is the main problem of these algorithms since the computational complexity is proportionally related to the support window size. In this paper, we present a novel cost aggregation method inspired by domain transformation, a recently proposed dimensionality reduction technique. This transformation enables the aggregation of 2-D cost data to be performed using a sequence of 1-D filters, which lowers computation and memory costs compared to conventional 2-D filters. Experiments show that the proposed method outperforms the state-of-the-art local methods in terms of computational performance, since its computational complexity is independent of the input parameters. Furthermore, according to the experimental results with the Middlebury dataset and real-world images, our algorithm is currently one of the most accurate and efficient local algorithms.
doi_str_mv 10.1109/TCSVT.2012.2223794
format article
fullrecord <record><control><sourceid>pascalfrancis_cross</sourceid><recordid>TN_cdi_pascalfrancis_primary_27529138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6328254</ieee_id><sourcerecordid>27529138</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-a4d382782d8d8af149d9e131f79733ea23a9efaf72fc1278e1eb7201e76da4d03</originalsourceid><addsrcrecordid>eNo9kE1PwzAMhiMEEmPwB-CSC8eO2GmX9DjK-JCGQFrhWoXWKUFbOyW98O-XfWgnW_LzWvbD2C2ICYDIH8pi-V1OUABOEFGqPD1jI8gynSCK7Dz2IoNEI2SX7CqEPyEg1akasc-nfm1cx0tvumB7vzaD67vk0QRq-NxaVzvqBl70YeCztvXU7gEeUb7oa7Piy4E89fzdDPWv69prdmHNKtDNsY7Z1_O8LF6TxcfLWzFbJLWcyiExaSM1Ko2NbrSxkOZNTiDBqlxJSQalyckaq9DWEDkC-lHxP1LTJmaFHDM87K19H4InW228Wxv_X4Godk6qvZNq56Q6Oomh-0NoY0K83canaxdOSVQZ5iB15O4OnCOi03gqUWOWyi25fmsh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Domain Transformation-Based Efficient Cost Aggregation for Local Stereo Matching</title><source>IEEE Xplore (Online service)</source><creator>Pham, Cuong Cao ; Jeon, Jae Wook</creator><creatorcontrib>Pham, Cuong Cao ; Jeon, Jae Wook</creatorcontrib><description>Binocular stereo matching is one of the most important algorithms in the field of computer vision. Adaptive support-weight approaches, the current state-of-the-art local methods, produce results comparable to those generated by global methods. However, excessive time consumption is the main problem of these algorithms since the computational complexity is proportionally related to the support window size. In this paper, we present a novel cost aggregation method inspired by domain transformation, a recently proposed dimensionality reduction technique. This transformation enables the aggregation of 2-D cost data to be performed using a sequence of 1-D filters, which lowers computation and memory costs compared to conventional 2-D filters. Experiments show that the proposed method outperforms the state-of-the-art local methods in terms of computational performance, since its computational complexity is independent of the input parameters. Furthermore, according to the experimental results with the Middlebury dataset and real-world images, our algorithm is currently one of the most accurate and efficient local algorithms.</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2012.2223794</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Accuracy ; Applied sciences ; Artificial intelligence ; Computational complexity ; Computed tomography ; Computer science; control theory; systems ; Cost aggregation ; domain transformation ; Equations ; Exact sciences and technology ; Image color analysis ; Image edge detection ; Image processing ; Information, signal and communications theory ; local stereo matching ; Measurement ; Pattern recognition. Digital image processing. Computational geometry ; Signal processing ; Telecommunications and information theory</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2013-07, Vol.23 (7), p.1119-1130</ispartof><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-a4d382782d8d8af149d9e131f79733ea23a9efaf72fc1278e1eb7201e76da4d03</citedby><cites>FETCH-LOGICAL-c363t-a4d382782d8d8af149d9e131f79733ea23a9efaf72fc1278e1eb7201e76da4d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6328254$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27529138$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Pham, Cuong Cao</creatorcontrib><creatorcontrib>Jeon, Jae Wook</creatorcontrib><title>Domain Transformation-Based Efficient Cost Aggregation for Local Stereo Matching</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>Binocular stereo matching is one of the most important algorithms in the field of computer vision. Adaptive support-weight approaches, the current state-of-the-art local methods, produce results comparable to those generated by global methods. However, excessive time consumption is the main problem of these algorithms since the computational complexity is proportionally related to the support window size. In this paper, we present a novel cost aggregation method inspired by domain transformation, a recently proposed dimensionality reduction technique. This transformation enables the aggregation of 2-D cost data to be performed using a sequence of 1-D filters, which lowers computation and memory costs compared to conventional 2-D filters. Experiments show that the proposed method outperforms the state-of-the-art local methods in terms of computational performance, since its computational complexity is independent of the input parameters. Furthermore, according to the experimental results with the Middlebury dataset and real-world images, our algorithm is currently one of the most accurate and efficient local algorithms.</description><subject>Accuracy</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computational complexity</subject><subject>Computed tomography</subject><subject>Computer science; control theory; systems</subject><subject>Cost aggregation</subject><subject>domain transformation</subject><subject>Equations</subject><subject>Exact sciences and technology</subject><subject>Image color analysis</subject><subject>Image edge detection</subject><subject>Image processing</subject><subject>Information, signal and communications theory</subject><subject>local stereo matching</subject><subject>Measurement</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Signal processing</subject><subject>Telecommunications and information theory</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kE1PwzAMhiMEEmPwB-CSC8eO2GmX9DjK-JCGQFrhWoXWKUFbOyW98O-XfWgnW_LzWvbD2C2ICYDIH8pi-V1OUABOEFGqPD1jI8gynSCK7Dz2IoNEI2SX7CqEPyEg1akasc-nfm1cx0tvumB7vzaD67vk0QRq-NxaVzvqBl70YeCztvXU7gEeUb7oa7Piy4E89fzdDPWv69prdmHNKtDNsY7Z1_O8LF6TxcfLWzFbJLWcyiExaSM1Ko2NbrSxkOZNTiDBqlxJSQalyckaq9DWEDkC-lHxP1LTJmaFHDM87K19H4InW228Wxv_X4Godk6qvZNq56Q6Oomh-0NoY0K83canaxdOSVQZ5iB15O4OnCOi03gqUWOWyi25fmsh</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Pham, Cuong Cao</creator><creator>Jeon, Jae Wook</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130701</creationdate><title>Domain Transformation-Based Efficient Cost Aggregation for Local Stereo Matching</title><author>Pham, Cuong Cao ; Jeon, Jae Wook</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-a4d382782d8d8af149d9e131f79733ea23a9efaf72fc1278e1eb7201e76da4d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Accuracy</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computational complexity</topic><topic>Computed tomography</topic><topic>Computer science; control theory; systems</topic><topic>Cost aggregation</topic><topic>domain transformation</topic><topic>Equations</topic><topic>Exact sciences and technology</topic><topic>Image color analysis</topic><topic>Image edge detection</topic><topic>Image processing</topic><topic>Information, signal and communications theory</topic><topic>local stereo matching</topic><topic>Measurement</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Signal processing</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pham, Cuong Cao</creatorcontrib><creatorcontrib>Jeon, Jae Wook</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pham, Cuong Cao</au><au>Jeon, Jae Wook</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Domain Transformation-Based Efficient Cost Aggregation for Local Stereo Matching</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2013-07-01</date><risdate>2013</risdate><volume>23</volume><issue>7</issue><spage>1119</spage><epage>1130</epage><pages>1119-1130</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>Binocular stereo matching is one of the most important algorithms in the field of computer vision. Adaptive support-weight approaches, the current state-of-the-art local methods, produce results comparable to those generated by global methods. However, excessive time consumption is the main problem of these algorithms since the computational complexity is proportionally related to the support window size. In this paper, we present a novel cost aggregation method inspired by domain transformation, a recently proposed dimensionality reduction technique. This transformation enables the aggregation of 2-D cost data to be performed using a sequence of 1-D filters, which lowers computation and memory costs compared to conventional 2-D filters. Experiments show that the proposed method outperforms the state-of-the-art local methods in terms of computational performance, since its computational complexity is independent of the input parameters. Furthermore, according to the experimental results with the Middlebury dataset and real-world images, our algorithm is currently one of the most accurate and efficient local algorithms.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2012.2223794</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1051-8215
ispartof IEEE transactions on circuits and systems for video technology, 2013-07, Vol.23 (7), p.1119-1130
issn 1051-8215
1558-2205
language eng
recordid cdi_pascalfrancis_primary_27529138
source IEEE Xplore (Online service)
subjects Accuracy
Applied sciences
Artificial intelligence
Computational complexity
Computed tomography
Computer science
control theory
systems
Cost aggregation
domain transformation
Equations
Exact sciences and technology
Image color analysis
Image edge detection
Image processing
Information, signal and communications theory
local stereo matching
Measurement
Pattern recognition. Digital image processing. Computational geometry
Signal processing
Telecommunications and information theory
title Domain Transformation-Based Efficient Cost Aggregation for Local Stereo Matching
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A09%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Domain%20Transformation-Based%20Efficient%20Cost%20Aggregation%20for%20Local%20Stereo%20Matching&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Pham,%20Cuong%20Cao&rft.date=2013-07-01&rft.volume=23&rft.issue=7&rft.spage=1119&rft.epage=1130&rft.pages=1119-1130&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2012.2223794&rft_dat=%3Cpascalfrancis_cross%3E27529138%3C/pascalfrancis_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-a4d382782d8d8af149d9e131f79733ea23a9efaf72fc1278e1eb7201e76da4d03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6328254&rfr_iscdi=true