Loading…

Study of Low-Frequency Noise Performance of Nanobridge-Based SQUIDs in External Magnetic Fields

We report on the low-frequency noise performance of niobium dc superconducting quantum interference devices (SQUIDs), which contain nanobridges fabricated by focused ion beam lithography as the active Josephson elements. The devices have feature sizes down to 70 nm. We have measured devices of diffe...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on applied superconductivity 2013-06, Vol.23 (3), p.1601004-1601004
Main Authors: Rozhko, S., Hino, T., Blois, A., Hao, L., Gallop, J. C., Cox, D. C., Romans, E. J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c356t-b72987da94edc33df6eda02191a3b71c480402d090be97689d48a36cb1b761d73
cites cdi_FETCH-LOGICAL-c356t-b72987da94edc33df6eda02191a3b71c480402d090be97689d48a36cb1b761d73
container_end_page 1601004
container_issue 3
container_start_page 1601004
container_title IEEE transactions on applied superconductivity
container_volume 23
creator Rozhko, S.
Hino, T.
Blois, A.
Hao, L.
Gallop, J. C.
Cox, D. C.
Romans, E. J.
description We report on the low-frequency noise performance of niobium dc superconducting quantum interference devices (SQUIDs), which contain nanobridges fabricated by focused ion beam lithography as the active Josephson elements. The devices have feature sizes down to 70 nm. We have measured devices of different loop sizes in two readout configurations: nano-scale loop sizes in small signal mode using a series SQUID array as a low-temperature pre-amplifier, and larger micron-scale loop sizes in a conventional flux-locked loop. We investigate the different contributions to the low frequency noise and report on electrical measurements made in applied magnetic fields of up to 0.5 T (in-plane) and 0.1 T (perpendicular to the plane) at operating temperatures around 7 K. We compare the measurements with the existing theories of noise in a dc SQUID.
doi_str_mv 10.1109/TASC.2012.2233537
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_27529919</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6378430</ieee_id><sourcerecordid>1349433311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-b72987da94edc33df6eda02191a3b71c480402d090be97689d48a36cb1b761d73</originalsourceid><addsrcrecordid>eNpdkE1r3DAQhk1poWnSH1B6EZRCL95o9GFZx3SbTQPbJGWTs5ClcVDwWqnkpd1_H5ldcuhpBuZ5h5mnqj4BXQBQfX5_sVkuGAW2YIxzydWb6gSkbGsmQb4tPZVQt2X2vvqQ8xOlIFohTyqzmXZ-T2JP1vFvvUr4Z4ej25ObGDKSO0x9TFs7OpyRGzvGLgX_iPV3m9GTze-H6x-ZhJFc_pswjXYgv-zjiFNwZBVw8PmsetfbIePHYz2tHlaX98uf9fr26np5sa4dl81Ud4rpVnmrBXrHue8b9JYy0GB5p8CJlgrKPNW0Q62aVnvRWt64DjrVgFf8tPp22PucYnkhT2YbssNhsCPGXTbAhRacc4CCfvkPfYq7-fZCMcWapgEtCwUHyqWYc8LePKewtWlvgJpZuZmVm1m5OSovma_HzTY7O_SpiAv5NciUZFqDLtznAxcQ8XXccNUKTvkLuv6IAA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1272666195</pqid></control><display><type>article</type><title>Study of Low-Frequency Noise Performance of Nanobridge-Based SQUIDs in External Magnetic Fields</title><source>IEEE Xplore (Online service)</source><creator>Rozhko, S. ; Hino, T. ; Blois, A. ; Hao, L. ; Gallop, J. C. ; Cox, D. C. ; Romans, E. J.</creator><creatorcontrib>Rozhko, S. ; Hino, T. ; Blois, A. ; Hao, L. ; Gallop, J. C. ; Cox, D. C. ; Romans, E. J.</creatorcontrib><description>We report on the low-frequency noise performance of niobium dc superconducting quantum interference devices (SQUIDs), which contain nanobridges fabricated by focused ion beam lithography as the active Josephson elements. The devices have feature sizes down to 70 nm. We have measured devices of different loop sizes in two readout configurations: nano-scale loop sizes in small signal mode using a series SQUID array as a low-temperature pre-amplifier, and larger micron-scale loop sizes in a conventional flux-locked loop. We investigate the different contributions to the low frequency noise and report on electrical measurements made in applied magnetic fields of up to 0.5 T (in-plane) and 0.1 T (perpendicular to the plane) at operating temperatures around 7 K. We compare the measurements with the existing theories of noise in a dc SQUID.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2012.2233537</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Circuit properties ; Circuits of signal characteristics conditioning (including delay circuits) ; Devices ; Direct current ; Electric, optical and optoelectronic circuits ; Electronic circuits ; Electronics ; Exact sciences and technology ; Low-frequency noise ; Magnetic field measurement ; Magnetic field sensitivity ; Microelectronic fabrication (materials and surfaces technology) ; Molecular electronics, nanoelectronics ; Nanocomposites ; Nanomaterials ; nanoscale superconducting quantum interference device (SQUID) ; Nanostructure ; Noise ; Noise measurement ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; SQUIDs ; Superconducting devices ; Superconducting quantum interference devices ; Temperature measurement</subject><ispartof>IEEE transactions on applied superconductivity, 2013-06, Vol.23 (3), p.1601004-1601004</ispartof><rights>2014 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-b72987da94edc33df6eda02191a3b71c480402d090be97689d48a36cb1b761d73</citedby><cites>FETCH-LOGICAL-c356t-b72987da94edc33df6eda02191a3b71c480402d090be97689d48a36cb1b761d73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6378430$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27529919$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Rozhko, S.</creatorcontrib><creatorcontrib>Hino, T.</creatorcontrib><creatorcontrib>Blois, A.</creatorcontrib><creatorcontrib>Hao, L.</creatorcontrib><creatorcontrib>Gallop, J. C.</creatorcontrib><creatorcontrib>Cox, D. C.</creatorcontrib><creatorcontrib>Romans, E. J.</creatorcontrib><title>Study of Low-Frequency Noise Performance of Nanobridge-Based SQUIDs in External Magnetic Fields</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>We report on the low-frequency noise performance of niobium dc superconducting quantum interference devices (SQUIDs), which contain nanobridges fabricated by focused ion beam lithography as the active Josephson elements. The devices have feature sizes down to 70 nm. We have measured devices of different loop sizes in two readout configurations: nano-scale loop sizes in small signal mode using a series SQUID array as a low-temperature pre-amplifier, and larger micron-scale loop sizes in a conventional flux-locked loop. We investigate the different contributions to the low frequency noise and report on electrical measurements made in applied magnetic fields of up to 0.5 T (in-plane) and 0.1 T (perpendicular to the plane) at operating temperatures around 7 K. We compare the measurements with the existing theories of noise in a dc SQUID.</description><subject>Applied sciences</subject><subject>Circuit properties</subject><subject>Circuits of signal characteristics conditioning (including delay circuits)</subject><subject>Devices</subject><subject>Direct current</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronic circuits</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Low-frequency noise</subject><subject>Magnetic field measurement</subject><subject>Magnetic field sensitivity</subject><subject>Microelectronic fabrication (materials and surfaces technology)</subject><subject>Molecular electronics, nanoelectronics</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>nanoscale superconducting quantum interference device (SQUID)</subject><subject>Nanostructure</subject><subject>Noise</subject><subject>Noise measurement</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>SQUIDs</subject><subject>Superconducting devices</subject><subject>Superconducting quantum interference devices</subject><subject>Temperature measurement</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpdkE1r3DAQhk1poWnSH1B6EZRCL95o9GFZx3SbTQPbJGWTs5ClcVDwWqnkpd1_H5ldcuhpBuZ5h5mnqj4BXQBQfX5_sVkuGAW2YIxzydWb6gSkbGsmQb4tPZVQt2X2vvqQ8xOlIFohTyqzmXZ-T2JP1vFvvUr4Z4ej25ObGDKSO0x9TFs7OpyRGzvGLgX_iPV3m9GTze-H6x-ZhJFc_pswjXYgv-zjiFNwZBVw8PmsetfbIePHYz2tHlaX98uf9fr26np5sa4dl81Ud4rpVnmrBXrHue8b9JYy0GB5p8CJlgrKPNW0Q62aVnvRWt64DjrVgFf8tPp22PucYnkhT2YbssNhsCPGXTbAhRacc4CCfvkPfYq7-fZCMcWapgEtCwUHyqWYc8LePKewtWlvgJpZuZmVm1m5OSovma_HzTY7O_SpiAv5NciUZFqDLtznAxcQ8XXccNUKTvkLuv6IAA</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Rozhko, S.</creator><creator>Hino, T.</creator><creator>Blois, A.</creator><creator>Hao, L.</creator><creator>Gallop, J. C.</creator><creator>Cox, D. C.</creator><creator>Romans, E. J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20130601</creationdate><title>Study of Low-Frequency Noise Performance of Nanobridge-Based SQUIDs in External Magnetic Fields</title><author>Rozhko, S. ; Hino, T. ; Blois, A. ; Hao, L. ; Gallop, J. C. ; Cox, D. C. ; Romans, E. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-b72987da94edc33df6eda02191a3b71c480402d090be97689d48a36cb1b761d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Circuit properties</topic><topic>Circuits of signal characteristics conditioning (including delay circuits)</topic><topic>Devices</topic><topic>Direct current</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronic circuits</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Low-frequency noise</topic><topic>Magnetic field measurement</topic><topic>Magnetic field sensitivity</topic><topic>Microelectronic fabrication (materials and surfaces technology)</topic><topic>Molecular electronics, nanoelectronics</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>nanoscale superconducting quantum interference device (SQUID)</topic><topic>Nanostructure</topic><topic>Noise</topic><topic>Noise measurement</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>SQUIDs</topic><topic>Superconducting devices</topic><topic>Superconducting quantum interference devices</topic><topic>Temperature measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rozhko, S.</creatorcontrib><creatorcontrib>Hino, T.</creatorcontrib><creatorcontrib>Blois, A.</creatorcontrib><creatorcontrib>Hao, L.</creatorcontrib><creatorcontrib>Gallop, J. C.</creatorcontrib><creatorcontrib>Cox, D. C.</creatorcontrib><creatorcontrib>Romans, E. J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rozhko, S.</au><au>Hino, T.</au><au>Blois, A.</au><au>Hao, L.</au><au>Gallop, J. C.</au><au>Cox, D. C.</au><au>Romans, E. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of Low-Frequency Noise Performance of Nanobridge-Based SQUIDs in External Magnetic Fields</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2013-06-01</date><risdate>2013</risdate><volume>23</volume><issue>3</issue><spage>1601004</spage><epage>1601004</epage><pages>1601004-1601004</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>We report on the low-frequency noise performance of niobium dc superconducting quantum interference devices (SQUIDs), which contain nanobridges fabricated by focused ion beam lithography as the active Josephson elements. The devices have feature sizes down to 70 nm. We have measured devices of different loop sizes in two readout configurations: nano-scale loop sizes in small signal mode using a series SQUID array as a low-temperature pre-amplifier, and larger micron-scale loop sizes in a conventional flux-locked loop. We investigate the different contributions to the low frequency noise and report on electrical measurements made in applied magnetic fields of up to 0.5 T (in-plane) and 0.1 T (perpendicular to the plane) at operating temperatures around 7 K. We compare the measurements with the existing theories of noise in a dc SQUID.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TASC.2012.2233537</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2013-06, Vol.23 (3), p.1601004-1601004
issn 1051-8223
1558-2515
language eng
recordid cdi_pascalfrancis_primary_27529919
source IEEE Xplore (Online service)
subjects Applied sciences
Circuit properties
Circuits of signal characteristics conditioning (including delay circuits)
Devices
Direct current
Electric, optical and optoelectronic circuits
Electronic circuits
Electronics
Exact sciences and technology
Low-frequency noise
Magnetic field measurement
Magnetic field sensitivity
Microelectronic fabrication (materials and surfaces technology)
Molecular electronics, nanoelectronics
Nanocomposites
Nanomaterials
nanoscale superconducting quantum interference device (SQUID)
Nanostructure
Noise
Noise measurement
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
SQUIDs
Superconducting devices
Superconducting quantum interference devices
Temperature measurement
title Study of Low-Frequency Noise Performance of Nanobridge-Based SQUIDs in External Magnetic Fields
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A00%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20Low-Frequency%20Noise%20Performance%20of%20Nanobridge-Based%20SQUIDs%20in%20External%20Magnetic%20Fields&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Rozhko,%20S.&rft.date=2013-06-01&rft.volume=23&rft.issue=3&rft.spage=1601004&rft.epage=1601004&rft.pages=1601004-1601004&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2012.2233537&rft_dat=%3Cproquest_pasca%3E1349433311%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c356t-b72987da94edc33df6eda02191a3b71c480402d090be97689d48a36cb1b761d73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1272666195&rft_id=info:pmid/&rft_ieee_id=6378430&rfr_iscdi=true