Loading…
Study of Low-Frequency Noise Performance of Nanobridge-Based SQUIDs in External Magnetic Fields
We report on the low-frequency noise performance of niobium dc superconducting quantum interference devices (SQUIDs), which contain nanobridges fabricated by focused ion beam lithography as the active Josephson elements. The devices have feature sizes down to 70 nm. We have measured devices of diffe...
Saved in:
Published in: | IEEE transactions on applied superconductivity 2013-06, Vol.23 (3), p.1601004-1601004 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c356t-b72987da94edc33df6eda02191a3b71c480402d090be97689d48a36cb1b761d73 |
---|---|
cites | cdi_FETCH-LOGICAL-c356t-b72987da94edc33df6eda02191a3b71c480402d090be97689d48a36cb1b761d73 |
container_end_page | 1601004 |
container_issue | 3 |
container_start_page | 1601004 |
container_title | IEEE transactions on applied superconductivity |
container_volume | 23 |
creator | Rozhko, S. Hino, T. Blois, A. Hao, L. Gallop, J. C. Cox, D. C. Romans, E. J. |
description | We report on the low-frequency noise performance of niobium dc superconducting quantum interference devices (SQUIDs), which contain nanobridges fabricated by focused ion beam lithography as the active Josephson elements. The devices have feature sizes down to 70 nm. We have measured devices of different loop sizes in two readout configurations: nano-scale loop sizes in small signal mode using a series SQUID array as a low-temperature pre-amplifier, and larger micron-scale loop sizes in a conventional flux-locked loop. We investigate the different contributions to the low frequency noise and report on electrical measurements made in applied magnetic fields of up to 0.5 T (in-plane) and 0.1 T (perpendicular to the plane) at operating temperatures around 7 K. We compare the measurements with the existing theories of noise in a dc SQUID. |
doi_str_mv | 10.1109/TASC.2012.2233537 |
format | article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_27529919</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6378430</ieee_id><sourcerecordid>1349433311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-b72987da94edc33df6eda02191a3b71c480402d090be97689d48a36cb1b761d73</originalsourceid><addsrcrecordid>eNpdkE1r3DAQhk1poWnSH1B6EZRCL95o9GFZx3SbTQPbJGWTs5ClcVDwWqnkpd1_H5ldcuhpBuZ5h5mnqj4BXQBQfX5_sVkuGAW2YIxzydWb6gSkbGsmQb4tPZVQt2X2vvqQ8xOlIFohTyqzmXZ-T2JP1vFvvUr4Z4ej25ObGDKSO0x9TFs7OpyRGzvGLgX_iPV3m9GTze-H6x-ZhJFc_pswjXYgv-zjiFNwZBVw8PmsetfbIePHYz2tHlaX98uf9fr26np5sa4dl81Ud4rpVnmrBXrHue8b9JYy0GB5p8CJlgrKPNW0Q62aVnvRWt64DjrVgFf8tPp22PucYnkhT2YbssNhsCPGXTbAhRacc4CCfvkPfYq7-fZCMcWapgEtCwUHyqWYc8LePKewtWlvgJpZuZmVm1m5OSovma_HzTY7O_SpiAv5NciUZFqDLtznAxcQ8XXccNUKTvkLuv6IAA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1272666195</pqid></control><display><type>article</type><title>Study of Low-Frequency Noise Performance of Nanobridge-Based SQUIDs in External Magnetic Fields</title><source>IEEE Xplore (Online service)</source><creator>Rozhko, S. ; Hino, T. ; Blois, A. ; Hao, L. ; Gallop, J. C. ; Cox, D. C. ; Romans, E. J.</creator><creatorcontrib>Rozhko, S. ; Hino, T. ; Blois, A. ; Hao, L. ; Gallop, J. C. ; Cox, D. C. ; Romans, E. J.</creatorcontrib><description>We report on the low-frequency noise performance of niobium dc superconducting quantum interference devices (SQUIDs), which contain nanobridges fabricated by focused ion beam lithography as the active Josephson elements. The devices have feature sizes down to 70 nm. We have measured devices of different loop sizes in two readout configurations: nano-scale loop sizes in small signal mode using a series SQUID array as a low-temperature pre-amplifier, and larger micron-scale loop sizes in a conventional flux-locked loop. We investigate the different contributions to the low frequency noise and report on electrical measurements made in applied magnetic fields of up to 0.5 T (in-plane) and 0.1 T (perpendicular to the plane) at operating temperatures around 7 K. We compare the measurements with the existing theories of noise in a dc SQUID.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2012.2233537</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Circuit properties ; Circuits of signal characteristics conditioning (including delay circuits) ; Devices ; Direct current ; Electric, optical and optoelectronic circuits ; Electronic circuits ; Electronics ; Exact sciences and technology ; Low-frequency noise ; Magnetic field measurement ; Magnetic field sensitivity ; Microelectronic fabrication (materials and surfaces technology) ; Molecular electronics, nanoelectronics ; Nanocomposites ; Nanomaterials ; nanoscale superconducting quantum interference device (SQUID) ; Nanostructure ; Noise ; Noise measurement ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; SQUIDs ; Superconducting devices ; Superconducting quantum interference devices ; Temperature measurement</subject><ispartof>IEEE transactions on applied superconductivity, 2013-06, Vol.23 (3), p.1601004-1601004</ispartof><rights>2014 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-b72987da94edc33df6eda02191a3b71c480402d090be97689d48a36cb1b761d73</citedby><cites>FETCH-LOGICAL-c356t-b72987da94edc33df6eda02191a3b71c480402d090be97689d48a36cb1b761d73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6378430$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27529919$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Rozhko, S.</creatorcontrib><creatorcontrib>Hino, T.</creatorcontrib><creatorcontrib>Blois, A.</creatorcontrib><creatorcontrib>Hao, L.</creatorcontrib><creatorcontrib>Gallop, J. C.</creatorcontrib><creatorcontrib>Cox, D. C.</creatorcontrib><creatorcontrib>Romans, E. J.</creatorcontrib><title>Study of Low-Frequency Noise Performance of Nanobridge-Based SQUIDs in External Magnetic Fields</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>We report on the low-frequency noise performance of niobium dc superconducting quantum interference devices (SQUIDs), which contain nanobridges fabricated by focused ion beam lithography as the active Josephson elements. The devices have feature sizes down to 70 nm. We have measured devices of different loop sizes in two readout configurations: nano-scale loop sizes in small signal mode using a series SQUID array as a low-temperature pre-amplifier, and larger micron-scale loop sizes in a conventional flux-locked loop. We investigate the different contributions to the low frequency noise and report on electrical measurements made in applied magnetic fields of up to 0.5 T (in-plane) and 0.1 T (perpendicular to the plane) at operating temperatures around 7 K. We compare the measurements with the existing theories of noise in a dc SQUID.</description><subject>Applied sciences</subject><subject>Circuit properties</subject><subject>Circuits of signal characteristics conditioning (including delay circuits)</subject><subject>Devices</subject><subject>Direct current</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronic circuits</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Low-frequency noise</subject><subject>Magnetic field measurement</subject><subject>Magnetic field sensitivity</subject><subject>Microelectronic fabrication (materials and surfaces technology)</subject><subject>Molecular electronics, nanoelectronics</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>nanoscale superconducting quantum interference device (SQUID)</subject><subject>Nanostructure</subject><subject>Noise</subject><subject>Noise measurement</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>SQUIDs</subject><subject>Superconducting devices</subject><subject>Superconducting quantum interference devices</subject><subject>Temperature measurement</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpdkE1r3DAQhk1poWnSH1B6EZRCL95o9GFZx3SbTQPbJGWTs5ClcVDwWqnkpd1_H5ldcuhpBuZ5h5mnqj4BXQBQfX5_sVkuGAW2YIxzydWb6gSkbGsmQb4tPZVQt2X2vvqQ8xOlIFohTyqzmXZ-T2JP1vFvvUr4Z4ej25ObGDKSO0x9TFs7OpyRGzvGLgX_iPV3m9GTze-H6x-ZhJFc_pswjXYgv-zjiFNwZBVw8PmsetfbIePHYz2tHlaX98uf9fr26np5sa4dl81Ud4rpVnmrBXrHue8b9JYy0GB5p8CJlgrKPNW0Q62aVnvRWt64DjrVgFf8tPp22PucYnkhT2YbssNhsCPGXTbAhRacc4CCfvkPfYq7-fZCMcWapgEtCwUHyqWYc8LePKewtWlvgJpZuZmVm1m5OSovma_HzTY7O_SpiAv5NciUZFqDLtznAxcQ8XXccNUKTvkLuv6IAA</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Rozhko, S.</creator><creator>Hino, T.</creator><creator>Blois, A.</creator><creator>Hao, L.</creator><creator>Gallop, J. C.</creator><creator>Cox, D. C.</creator><creator>Romans, E. J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20130601</creationdate><title>Study of Low-Frequency Noise Performance of Nanobridge-Based SQUIDs in External Magnetic Fields</title><author>Rozhko, S. ; Hino, T. ; Blois, A. ; Hao, L. ; Gallop, J. C. ; Cox, D. C. ; Romans, E. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-b72987da94edc33df6eda02191a3b71c480402d090be97689d48a36cb1b761d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Circuit properties</topic><topic>Circuits of signal characteristics conditioning (including delay circuits)</topic><topic>Devices</topic><topic>Direct current</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronic circuits</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Low-frequency noise</topic><topic>Magnetic field measurement</topic><topic>Magnetic field sensitivity</topic><topic>Microelectronic fabrication (materials and surfaces technology)</topic><topic>Molecular electronics, nanoelectronics</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>nanoscale superconducting quantum interference device (SQUID)</topic><topic>Nanostructure</topic><topic>Noise</topic><topic>Noise measurement</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>SQUIDs</topic><topic>Superconducting devices</topic><topic>Superconducting quantum interference devices</topic><topic>Temperature measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rozhko, S.</creatorcontrib><creatorcontrib>Hino, T.</creatorcontrib><creatorcontrib>Blois, A.</creatorcontrib><creatorcontrib>Hao, L.</creatorcontrib><creatorcontrib>Gallop, J. C.</creatorcontrib><creatorcontrib>Cox, D. C.</creatorcontrib><creatorcontrib>Romans, E. J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rozhko, S.</au><au>Hino, T.</au><au>Blois, A.</au><au>Hao, L.</au><au>Gallop, J. C.</au><au>Cox, D. C.</au><au>Romans, E. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of Low-Frequency Noise Performance of Nanobridge-Based SQUIDs in External Magnetic Fields</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2013-06-01</date><risdate>2013</risdate><volume>23</volume><issue>3</issue><spage>1601004</spage><epage>1601004</epage><pages>1601004-1601004</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>We report on the low-frequency noise performance of niobium dc superconducting quantum interference devices (SQUIDs), which contain nanobridges fabricated by focused ion beam lithography as the active Josephson elements. The devices have feature sizes down to 70 nm. We have measured devices of different loop sizes in two readout configurations: nano-scale loop sizes in small signal mode using a series SQUID array as a low-temperature pre-amplifier, and larger micron-scale loop sizes in a conventional flux-locked loop. We investigate the different contributions to the low frequency noise and report on electrical measurements made in applied magnetic fields of up to 0.5 T (in-plane) and 0.1 T (perpendicular to the plane) at operating temperatures around 7 K. We compare the measurements with the existing theories of noise in a dc SQUID.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TASC.2012.2233537</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1051-8223 |
ispartof | IEEE transactions on applied superconductivity, 2013-06, Vol.23 (3), p.1601004-1601004 |
issn | 1051-8223 1558-2515 |
language | eng |
recordid | cdi_pascalfrancis_primary_27529919 |
source | IEEE Xplore (Online service) |
subjects | Applied sciences Circuit properties Circuits of signal characteristics conditioning (including delay circuits) Devices Direct current Electric, optical and optoelectronic circuits Electronic circuits Electronics Exact sciences and technology Low-frequency noise Magnetic field measurement Magnetic field sensitivity Microelectronic fabrication (materials and surfaces technology) Molecular electronics, nanoelectronics Nanocomposites Nanomaterials nanoscale superconducting quantum interference device (SQUID) Nanostructure Noise Noise measurement Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices SQUIDs Superconducting devices Superconducting quantum interference devices Temperature measurement |
title | Study of Low-Frequency Noise Performance of Nanobridge-Based SQUIDs in External Magnetic Fields |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A00%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20Low-Frequency%20Noise%20Performance%20of%20Nanobridge-Based%20SQUIDs%20in%20External%20Magnetic%20Fields&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Rozhko,%20S.&rft.date=2013-06-01&rft.volume=23&rft.issue=3&rft.spage=1601004&rft.epage=1601004&rft.pages=1601004-1601004&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2012.2233537&rft_dat=%3Cproquest_pasca%3E1349433311%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c356t-b72987da94edc33df6eda02191a3b71c480402d090be97689d48a36cb1b761d73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1272666195&rft_id=info:pmid/&rft_ieee_id=6378430&rfr_iscdi=true |