Loading…

A Traffic Distribution Technique to Minimize Packet Delivery Delay in Multilayered Satellite Networks

Multi-Layered Satellite Networks (MLSNs) have enormous potential to provide a ubiquitous wireless environment due to their advantages, such as extensive coverage, high network capacity, and lower delay performance. Since MLSNs are flexible and can be expanded easily to construct useful communication...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on vehicular technology 2013-09, Vol.62 (7), p.3315-3324
Main Authors: Kawamoto, Yuichi, Nishiyama, Hiroki, Kato, Nei, Kadowaki, Naoto
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Multi-Layered Satellite Networks (MLSNs) have enormous potential to provide a ubiquitous wireless environment due to their advantages, such as extensive coverage, high network capacity, and lower delay performance. Since MLSNs are flexible and can be expanded easily to construct useful communication networks, researchers have paid a great deal of attention to find out how to use them efficiently. However, traffic congestion may occur in such networks since the distribution of MLSN users is heavily influenced by geographical restrictions, and they may often lead to severe communication delay and throughput degradation. Traditional research has proposed a counter-measure for avoiding traffic congestion caused by traffic flow on each layer. However, they do not consider congestion due to the inter-layer traffic that may, indeed, occur in MLSNs. Therefore, to effectively resolve the problem of traffic congestion, we propose a new MLSN model by envisioning a method to distribute the flow of packets between the two layers of the considered MLSNs for minimizing the packet delivery delay of the network. Moreover, we analyze the effect of the method on the packet delivery delay by considering propagation and queuing latencies. The analysis clearly shows the advantage of our proposed model. Furthermore, computer-based simulation results validate our analysis and demonstrate the effectiveness of our proposed model.
ISSN:0018-9545
1939-9359
DOI:10.1109/TVT.2013.2256812