Loading…
Stochastic assessment of voltage dips caused by transformer energisation
Energisation of large power transformers may cause significant voltage dips, of which the severity largely depends on a number of parameters, including circuit breaker closing time, transformer core residual flux and core saturation characteristic, and network conditions. Since most of the parameter...
Saved in:
Published in: | IET generation, transmission & distribution transmission & distribution, 2013-12, Vol.7 (12), p.1383-1390 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5024-14ffb998d0529b266c20088e6f596356edaf5af8d5f0520d42223d14e58fa1183 |
---|---|
cites | cdi_FETCH-LOGICAL-c5024-14ffb998d0529b266c20088e6f596356edaf5af8d5f0520d42223d14e58fa1183 |
container_end_page | 1390 |
container_issue | 12 |
container_start_page | 1383 |
container_title | IET generation, transmission & distribution |
container_volume | 7 |
creator | Peng, Jinsheng Li, Haiyu Wang, Zhongdong Ghassemi, Foroozan Jarman, Paul |
description | Energisation of large power transformers may cause significant voltage dips, of which the severity largely depends on a number of parameters, including circuit breaker closing time, transformer core residual flux and core saturation characteristic, and network conditions. Since most of the parameters are of stochastic nature, Monte Carlo simulation was conducted in this study to stochastically assess the voltage dips caused by transformer energisation in a 400 kV grid, using a network model developed and validated against field measurements. A dip frequency pattern was identified over 1000 stochastic runs and it was found to be sensitive to residual flux distribution but insensitive to closing offset time distribution. The probability of reaching the worst case dip magnitude (estimated under the commonly agreed worst energisation condition) was found to be lower than 0.5%; about 80% of the dips are likely to be with magnitudes lower than 0.6 pu of the worst case. Nevertheless, there are dips with magnitudes exceeding the worst case dip magnitude, indicating the inadequacy of deterministic assessment approach by using the commonly agreed worst energisation condition. |
doi_str_mv | 10.1049/iet-gtd.2013.0091 |
format | article |
fullrecord | <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_pascalfrancis_primary_28001859</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1494360935</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5024-14ffb998d0529b266c20088e6f596356edaf5af8d5f0520d42223d14e58fa1183</originalsourceid><addsrcrecordid>eNqFkE2LFDEQQBtRcF39Ad4aRNBDj5V00pN403W_YMGD4zlkksqYpaczpjLK_HvTzDKIKJ5Sh_eKymualwwWDIR-F7F0m-IXHFi_ANDsUXPGlpJ1atDy8WlWy6fNM6J7ACkHsTxrbr6U5L5ZKtG1lgiJtjiVNoX2RxqL3WDr445aZ_eEvl0f2pLtRCHlLeYWJ8ybSLbEND1vngQ7Er54eM-br1eXq4ub7u7z9e3Fh7vOSeCiYyKEtdbKg-R6zYfBcQClcAhSD70c0NsgbVBehkqAF5zz3jOBUgXLmOrPmzfHvbucvu-RitlGcjiOdsK0J8OEFv0AupcVffUHep_2earXVWrJagJQvFLsSLmciDIGs8txa_PBMDBzW1PbmtrWzG3N3LY6rx82W3J2DLWJi3QSuQJgSurKvT9yP-OIh_8vNterT_zjVbWFqPLbozxjp8tvL1cz9Zuz86Gy3V_Yf3_gF_eiqFQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1471055082</pqid></control><display><type>article</type><title>Stochastic assessment of voltage dips caused by transformer energisation</title><source>Wiley Online Library Open Access</source><creator>Peng, Jinsheng ; Li, Haiyu ; Wang, Zhongdong ; Ghassemi, Foroozan ; Jarman, Paul</creator><creatorcontrib>Peng, Jinsheng ; Li, Haiyu ; Wang, Zhongdong ; Ghassemi, Foroozan ; Jarman, Paul</creatorcontrib><description>Energisation of large power transformers may cause significant voltage dips, of which the severity largely depends on a number of parameters, including circuit breaker closing time, transformer core residual flux and core saturation characteristic, and network conditions. Since most of the parameters are of stochastic nature, Monte Carlo simulation was conducted in this study to stochastically assess the voltage dips caused by transformer energisation in a 400 kV grid, using a network model developed and validated against field measurements. A dip frequency pattern was identified over 1000 stochastic runs and it was found to be sensitive to residual flux distribution but insensitive to closing offset time distribution. The probability of reaching the worst case dip magnitude (estimated under the commonly agreed worst energisation condition) was found to be lower than 0.5%; about 80% of the dips are likely to be with magnitudes lower than 0.6 pu of the worst case. Nevertheless, there are dips with magnitudes exceeding the worst case dip magnitude, indicating the inadequacy of deterministic assessment approach by using the commonly agreed worst energisation condition.</description><identifier>ISSN: 1751-8687</identifier><identifier>ISSN: 1751-8695</identifier><identifier>EISSN: 1751-8695</identifier><identifier>DOI: 10.1049/iet-gtd.2013.0091</identifier><language>eng</language><publisher>Stevenage: The Institution of Engineering and Technology</publisher><subject>Applied sciences ; Assessments ; circuit breaker closing time ; circuit breakers ; closing offset time distribution ; Connection and protection apparatus ; core saturation characteristic ; deterministic assessment approach ; dip frequency pattern ; Disturbances. Regulation. Protection ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; energisation condition ; Exact sciences and technology ; field measurements ; Monte Carlo methods ; Monte Carlo simulation ; network conditions ; Power electronics, power supplies ; Power networks and lines ; power transformers ; probability ; residual flux distribution ; stochastic assessment ; stochastic nature ; stochastic processes ; transformer core residual flux ; transformer energisation ; Transformers and inductors ; voltage 400 kV ; voltage dips</subject><ispartof>IET generation, transmission & distribution, 2013-12, Vol.7 (12), p.1383-1390</ispartof><rights>The Institution of Engineering and Technology</rights><rights>2013 The Authors. IET Generation, Transmission & Distribution published by John Wiley & Sons, Ltd. on behalf of The Institution of Engineering and Technology</rights><rights>2015 INIST-CNRS</rights><rights>Copyright The Institution of Engineering & Technology 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5024-14ffb998d0529b266c20088e6f596356edaf5af8d5f0520d42223d14e58fa1183</citedby><cites>FETCH-LOGICAL-c5024-14ffb998d0529b266c20088e6f596356edaf5af8d5f0520d42223d14e58fa1183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fiet-gtd.2013.0091$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fiet-gtd.2013.0091$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,9755,11562,27924,27925,46052,46476</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-gtd.2013.0091$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28001859$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Peng, Jinsheng</creatorcontrib><creatorcontrib>Li, Haiyu</creatorcontrib><creatorcontrib>Wang, Zhongdong</creatorcontrib><creatorcontrib>Ghassemi, Foroozan</creatorcontrib><creatorcontrib>Jarman, Paul</creatorcontrib><title>Stochastic assessment of voltage dips caused by transformer energisation</title><title>IET generation, transmission & distribution</title><description>Energisation of large power transformers may cause significant voltage dips, of which the severity largely depends on a number of parameters, including circuit breaker closing time, transformer core residual flux and core saturation characteristic, and network conditions. Since most of the parameters are of stochastic nature, Monte Carlo simulation was conducted in this study to stochastically assess the voltage dips caused by transformer energisation in a 400 kV grid, using a network model developed and validated against field measurements. A dip frequency pattern was identified over 1000 stochastic runs and it was found to be sensitive to residual flux distribution but insensitive to closing offset time distribution. The probability of reaching the worst case dip magnitude (estimated under the commonly agreed worst energisation condition) was found to be lower than 0.5%; about 80% of the dips are likely to be with magnitudes lower than 0.6 pu of the worst case. Nevertheless, there are dips with magnitudes exceeding the worst case dip magnitude, indicating the inadequacy of deterministic assessment approach by using the commonly agreed worst energisation condition.</description><subject>Applied sciences</subject><subject>Assessments</subject><subject>circuit breaker closing time</subject><subject>circuit breakers</subject><subject>closing offset time distribution</subject><subject>Connection and protection apparatus</subject><subject>core saturation characteristic</subject><subject>deterministic assessment approach</subject><subject>dip frequency pattern</subject><subject>Disturbances. Regulation. Protection</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>energisation condition</subject><subject>Exact sciences and technology</subject><subject>field measurements</subject><subject>Monte Carlo methods</subject><subject>Monte Carlo simulation</subject><subject>network conditions</subject><subject>Power electronics, power supplies</subject><subject>Power networks and lines</subject><subject>power transformers</subject><subject>probability</subject><subject>residual flux distribution</subject><subject>stochastic assessment</subject><subject>stochastic nature</subject><subject>stochastic processes</subject><subject>transformer core residual flux</subject><subject>transformer energisation</subject><subject>Transformers and inductors</subject><subject>voltage 400 kV</subject><subject>voltage dips</subject><issn>1751-8687</issn><issn>1751-8695</issn><issn>1751-8695</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkE2LFDEQQBtRcF39Ad4aRNBDj5V00pN403W_YMGD4zlkksqYpaczpjLK_HvTzDKIKJ5Sh_eKymualwwWDIR-F7F0m-IXHFi_ANDsUXPGlpJ1atDy8WlWy6fNM6J7ACkHsTxrbr6U5L5ZKtG1lgiJtjiVNoX2RxqL3WDr445aZ_eEvl0f2pLtRCHlLeYWJ8ybSLbEND1vngQ7Er54eM-br1eXq4ub7u7z9e3Fh7vOSeCiYyKEtdbKg-R6zYfBcQClcAhSD70c0NsgbVBehkqAF5zz3jOBUgXLmOrPmzfHvbucvu-RitlGcjiOdsK0J8OEFv0AupcVffUHep_2earXVWrJagJQvFLsSLmciDIGs8txa_PBMDBzW1PbmtrWzG3N3LY6rx82W3J2DLWJi3QSuQJgSurKvT9yP-OIh_8vNterT_zjVbWFqPLbozxjp8tvL1cz9Zuz86Gy3V_Yf3_gF_eiqFQ</recordid><startdate>201312</startdate><enddate>201312</enddate><creator>Peng, Jinsheng</creator><creator>Li, Haiyu</creator><creator>Wang, Zhongdong</creator><creator>Ghassemi, Foroozan</creator><creator>Jarman, Paul</creator><general>The Institution of Engineering and Technology</general><general>Institution of Engineering and Technology</general><general>The Institution of Engineering & Technology</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>S0W</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>201312</creationdate><title>Stochastic assessment of voltage dips caused by transformer energisation</title><author>Peng, Jinsheng ; Li, Haiyu ; Wang, Zhongdong ; Ghassemi, Foroozan ; Jarman, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5024-14ffb998d0529b266c20088e6f596356edaf5af8d5f0520d42223d14e58fa1183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Assessments</topic><topic>circuit breaker closing time</topic><topic>circuit breakers</topic><topic>closing offset time distribution</topic><topic>Connection and protection apparatus</topic><topic>core saturation characteristic</topic><topic>deterministic assessment approach</topic><topic>dip frequency pattern</topic><topic>Disturbances. Regulation. Protection</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>energisation condition</topic><topic>Exact sciences and technology</topic><topic>field measurements</topic><topic>Monte Carlo methods</topic><topic>Monte Carlo simulation</topic><topic>network conditions</topic><topic>Power electronics, power supplies</topic><topic>Power networks and lines</topic><topic>power transformers</topic><topic>probability</topic><topic>residual flux distribution</topic><topic>stochastic assessment</topic><topic>stochastic nature</topic><topic>stochastic processes</topic><topic>transformer core residual flux</topic><topic>transformer energisation</topic><topic>Transformers and inductors</topic><topic>voltage 400 kV</topic><topic>voltage dips</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Jinsheng</creatorcontrib><creatorcontrib>Li, Haiyu</creatorcontrib><creatorcontrib>Wang, Zhongdong</creatorcontrib><creatorcontrib>Ghassemi, Foroozan</creatorcontrib><creatorcontrib>Jarman, Paul</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IET generation, transmission & distribution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Peng, Jinsheng</au><au>Li, Haiyu</au><au>Wang, Zhongdong</au><au>Ghassemi, Foroozan</au><au>Jarman, Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic assessment of voltage dips caused by transformer energisation</atitle><jtitle>IET generation, transmission & distribution</jtitle><date>2013-12</date><risdate>2013</risdate><volume>7</volume><issue>12</issue><spage>1383</spage><epage>1390</epage><pages>1383-1390</pages><issn>1751-8687</issn><issn>1751-8695</issn><eissn>1751-8695</eissn><abstract>Energisation of large power transformers may cause significant voltage dips, of which the severity largely depends on a number of parameters, including circuit breaker closing time, transformer core residual flux and core saturation characteristic, and network conditions. Since most of the parameters are of stochastic nature, Monte Carlo simulation was conducted in this study to stochastically assess the voltage dips caused by transformer energisation in a 400 kV grid, using a network model developed and validated against field measurements. A dip frequency pattern was identified over 1000 stochastic runs and it was found to be sensitive to residual flux distribution but insensitive to closing offset time distribution. The probability of reaching the worst case dip magnitude (estimated under the commonly agreed worst energisation condition) was found to be lower than 0.5%; about 80% of the dips are likely to be with magnitudes lower than 0.6 pu of the worst case. Nevertheless, there are dips with magnitudes exceeding the worst case dip magnitude, indicating the inadequacy of deterministic assessment approach by using the commonly agreed worst energisation condition.</abstract><cop>Stevenage</cop><pub>The Institution of Engineering and Technology</pub><doi>10.1049/iet-gtd.2013.0091</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1751-8687 |
ispartof | IET generation, transmission & distribution, 2013-12, Vol.7 (12), p.1383-1390 |
issn | 1751-8687 1751-8695 1751-8695 |
language | eng |
recordid | cdi_pascalfrancis_primary_28001859 |
source | Wiley Online Library Open Access |
subjects | Applied sciences Assessments circuit breaker closing time circuit breakers closing offset time distribution Connection and protection apparatus core saturation characteristic deterministic assessment approach dip frequency pattern Disturbances. Regulation. Protection Electrical engineering. Electrical power engineering Electrical power engineering energisation condition Exact sciences and technology field measurements Monte Carlo methods Monte Carlo simulation network conditions Power electronics, power supplies Power networks and lines power transformers probability residual flux distribution stochastic assessment stochastic nature stochastic processes transformer core residual flux transformer energisation Transformers and inductors voltage 400 kV voltage dips |
title | Stochastic assessment of voltage dips caused by transformer energisation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T23%3A27%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20assessment%20of%20voltage%20dips%20caused%20by%20transformer%20energisation&rft.jtitle=IET%20generation,%20transmission%20&%20distribution&rft.au=Peng,%20Jinsheng&rft.date=2013-12&rft.volume=7&rft.issue=12&rft.spage=1383&rft.epage=1390&rft.pages=1383-1390&rft.issn=1751-8687&rft.eissn=1751-8695&rft_id=info:doi/10.1049/iet-gtd.2013.0091&rft_dat=%3Cproquest_24P%3E1494360935%3C/proquest_24P%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5024-14ffb998d0529b266c20088e6f596356edaf5af8d5f0520d42223d14e58fa1183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1471055082&rft_id=info:pmid/&rfr_iscdi=true |