Loading…

Stochastic assessment of voltage dips caused by transformer energisation

Energisation of large power transformers may cause significant voltage dips, of which the severity largely depends on a number of parameters, including circuit breaker closing time, transformer core residual flux and core saturation characteristic, and network conditions. Since most of the parameter...

Full description

Saved in:
Bibliographic Details
Published in:IET generation, transmission & distribution transmission & distribution, 2013-12, Vol.7 (12), p.1383-1390
Main Authors: Peng, Jinsheng, Li, Haiyu, Wang, Zhongdong, Ghassemi, Foroozan, Jarman, Paul
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5024-14ffb998d0529b266c20088e6f596356edaf5af8d5f0520d42223d14e58fa1183
cites cdi_FETCH-LOGICAL-c5024-14ffb998d0529b266c20088e6f596356edaf5af8d5f0520d42223d14e58fa1183
container_end_page 1390
container_issue 12
container_start_page 1383
container_title IET generation, transmission & distribution
container_volume 7
creator Peng, Jinsheng
Li, Haiyu
Wang, Zhongdong
Ghassemi, Foroozan
Jarman, Paul
description Energisation of large power transformers may cause significant voltage dips, of which the severity largely depends on a number of parameters, including circuit breaker closing time, transformer core residual flux and core saturation characteristic, and network conditions. Since most of the parameters are of stochastic nature, Monte Carlo simulation was conducted in this study to stochastically assess the voltage dips caused by transformer energisation in a 400 kV grid, using a network model developed and validated against field measurements. A dip frequency pattern was identified over 1000 stochastic runs and it was found to be sensitive to residual flux distribution but insensitive to closing offset time distribution. The probability of reaching the worst case dip magnitude (estimated under the commonly agreed worst energisation condition) was found to be lower than 0.5%; about 80% of the dips are likely to be with magnitudes lower than 0.6 pu of the worst case. Nevertheless, there are dips with magnitudes exceeding the worst case dip magnitude, indicating the inadequacy of deterministic assessment approach by using the commonly agreed worst energisation condition.
doi_str_mv 10.1049/iet-gtd.2013.0091
format article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_pascalfrancis_primary_28001859</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1494360935</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5024-14ffb998d0529b266c20088e6f596356edaf5af8d5f0520d42223d14e58fa1183</originalsourceid><addsrcrecordid>eNqFkE2LFDEQQBtRcF39Ad4aRNBDj5V00pN403W_YMGD4zlkksqYpaczpjLK_HvTzDKIKJ5Sh_eKymualwwWDIR-F7F0m-IXHFi_ANDsUXPGlpJ1atDy8WlWy6fNM6J7ACkHsTxrbr6U5L5ZKtG1lgiJtjiVNoX2RxqL3WDr445aZ_eEvl0f2pLtRCHlLeYWJ8ybSLbEND1vngQ7Er54eM-br1eXq4ub7u7z9e3Fh7vOSeCiYyKEtdbKg-R6zYfBcQClcAhSD70c0NsgbVBehkqAF5zz3jOBUgXLmOrPmzfHvbucvu-RitlGcjiOdsK0J8OEFv0AupcVffUHep_2earXVWrJagJQvFLsSLmciDIGs8txa_PBMDBzW1PbmtrWzG3N3LY6rx82W3J2DLWJi3QSuQJgSurKvT9yP-OIh_8vNterT_zjVbWFqPLbozxjp8tvL1cz9Zuz86Gy3V_Yf3_gF_eiqFQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1471055082</pqid></control><display><type>article</type><title>Stochastic assessment of voltage dips caused by transformer energisation</title><source>Wiley Online Library Open Access</source><creator>Peng, Jinsheng ; Li, Haiyu ; Wang, Zhongdong ; Ghassemi, Foroozan ; Jarman, Paul</creator><creatorcontrib>Peng, Jinsheng ; Li, Haiyu ; Wang, Zhongdong ; Ghassemi, Foroozan ; Jarman, Paul</creatorcontrib><description>Energisation of large power transformers may cause significant voltage dips, of which the severity largely depends on a number of parameters, including circuit breaker closing time, transformer core residual flux and core saturation characteristic, and network conditions. Since most of the parameters are of stochastic nature, Monte Carlo simulation was conducted in this study to stochastically assess the voltage dips caused by transformer energisation in a 400 kV grid, using a network model developed and validated against field measurements. A dip frequency pattern was identified over 1000 stochastic runs and it was found to be sensitive to residual flux distribution but insensitive to closing offset time distribution. The probability of reaching the worst case dip magnitude (estimated under the commonly agreed worst energisation condition) was found to be lower than 0.5%; about 80% of the dips are likely to be with magnitudes lower than 0.6 pu of the worst case. Nevertheless, there are dips with magnitudes exceeding the worst case dip magnitude, indicating the inadequacy of deterministic assessment approach by using the commonly agreed worst energisation condition.</description><identifier>ISSN: 1751-8687</identifier><identifier>ISSN: 1751-8695</identifier><identifier>EISSN: 1751-8695</identifier><identifier>DOI: 10.1049/iet-gtd.2013.0091</identifier><language>eng</language><publisher>Stevenage: The Institution of Engineering and Technology</publisher><subject>Applied sciences ; Assessments ; circuit breaker closing time ; circuit breakers ; closing offset time distribution ; Connection and protection apparatus ; core saturation characteristic ; deterministic assessment approach ; dip frequency pattern ; Disturbances. Regulation. Protection ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; energisation condition ; Exact sciences and technology ; field measurements ; Monte Carlo methods ; Monte Carlo simulation ; network conditions ; Power electronics, power supplies ; Power networks and lines ; power transformers ; probability ; residual flux distribution ; stochastic assessment ; stochastic nature ; stochastic processes ; transformer core residual flux ; transformer energisation ; Transformers and inductors ; voltage 400 kV ; voltage dips</subject><ispartof>IET generation, transmission &amp; distribution, 2013-12, Vol.7 (12), p.1383-1390</ispartof><rights>The Institution of Engineering and Technology</rights><rights>2013 The Authors. IET Generation, Transmission &amp; Distribution published by John Wiley &amp; Sons, Ltd. on behalf of The Institution of Engineering and Technology</rights><rights>2015 INIST-CNRS</rights><rights>Copyright The Institution of Engineering &amp; Technology 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5024-14ffb998d0529b266c20088e6f596356edaf5af8d5f0520d42223d14e58fa1183</citedby><cites>FETCH-LOGICAL-c5024-14ffb998d0529b266c20088e6f596356edaf5af8d5f0520d42223d14e58fa1183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fiet-gtd.2013.0091$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fiet-gtd.2013.0091$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,9755,11562,27924,27925,46052,46476</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-gtd.2013.0091$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28001859$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Peng, Jinsheng</creatorcontrib><creatorcontrib>Li, Haiyu</creatorcontrib><creatorcontrib>Wang, Zhongdong</creatorcontrib><creatorcontrib>Ghassemi, Foroozan</creatorcontrib><creatorcontrib>Jarman, Paul</creatorcontrib><title>Stochastic assessment of voltage dips caused by transformer energisation</title><title>IET generation, transmission &amp; distribution</title><description>Energisation of large power transformers may cause significant voltage dips, of which the severity largely depends on a number of parameters, including circuit breaker closing time, transformer core residual flux and core saturation characteristic, and network conditions. Since most of the parameters are of stochastic nature, Monte Carlo simulation was conducted in this study to stochastically assess the voltage dips caused by transformer energisation in a 400 kV grid, using a network model developed and validated against field measurements. A dip frequency pattern was identified over 1000 stochastic runs and it was found to be sensitive to residual flux distribution but insensitive to closing offset time distribution. The probability of reaching the worst case dip magnitude (estimated under the commonly agreed worst energisation condition) was found to be lower than 0.5%; about 80% of the dips are likely to be with magnitudes lower than 0.6 pu of the worst case. Nevertheless, there are dips with magnitudes exceeding the worst case dip magnitude, indicating the inadequacy of deterministic assessment approach by using the commonly agreed worst energisation condition.</description><subject>Applied sciences</subject><subject>Assessments</subject><subject>circuit breaker closing time</subject><subject>circuit breakers</subject><subject>closing offset time distribution</subject><subject>Connection and protection apparatus</subject><subject>core saturation characteristic</subject><subject>deterministic assessment approach</subject><subject>dip frequency pattern</subject><subject>Disturbances. Regulation. Protection</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>energisation condition</subject><subject>Exact sciences and technology</subject><subject>field measurements</subject><subject>Monte Carlo methods</subject><subject>Monte Carlo simulation</subject><subject>network conditions</subject><subject>Power electronics, power supplies</subject><subject>Power networks and lines</subject><subject>power transformers</subject><subject>probability</subject><subject>residual flux distribution</subject><subject>stochastic assessment</subject><subject>stochastic nature</subject><subject>stochastic processes</subject><subject>transformer core residual flux</subject><subject>transformer energisation</subject><subject>Transformers and inductors</subject><subject>voltage 400 kV</subject><subject>voltage dips</subject><issn>1751-8687</issn><issn>1751-8695</issn><issn>1751-8695</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkE2LFDEQQBtRcF39Ad4aRNBDj5V00pN403W_YMGD4zlkksqYpaczpjLK_HvTzDKIKJ5Sh_eKymualwwWDIR-F7F0m-IXHFi_ANDsUXPGlpJ1atDy8WlWy6fNM6J7ACkHsTxrbr6U5L5ZKtG1lgiJtjiVNoX2RxqL3WDr445aZ_eEvl0f2pLtRCHlLeYWJ8ybSLbEND1vngQ7Er54eM-br1eXq4ub7u7z9e3Fh7vOSeCiYyKEtdbKg-R6zYfBcQClcAhSD70c0NsgbVBehkqAF5zz3jOBUgXLmOrPmzfHvbucvu-RitlGcjiOdsK0J8OEFv0AupcVffUHep_2earXVWrJagJQvFLsSLmciDIGs8txa_PBMDBzW1PbmtrWzG3N3LY6rx82W3J2DLWJi3QSuQJgSurKvT9yP-OIh_8vNterT_zjVbWFqPLbozxjp8tvL1cz9Zuz86Gy3V_Yf3_gF_eiqFQ</recordid><startdate>201312</startdate><enddate>201312</enddate><creator>Peng, Jinsheng</creator><creator>Li, Haiyu</creator><creator>Wang, Zhongdong</creator><creator>Ghassemi, Foroozan</creator><creator>Jarman, Paul</creator><general>The Institution of Engineering and Technology</general><general>Institution of Engineering and Technology</general><general>The Institution of Engineering &amp; Technology</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>S0W</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>201312</creationdate><title>Stochastic assessment of voltage dips caused by transformer energisation</title><author>Peng, Jinsheng ; Li, Haiyu ; Wang, Zhongdong ; Ghassemi, Foroozan ; Jarman, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5024-14ffb998d0529b266c20088e6f596356edaf5af8d5f0520d42223d14e58fa1183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Assessments</topic><topic>circuit breaker closing time</topic><topic>circuit breakers</topic><topic>closing offset time distribution</topic><topic>Connection and protection apparatus</topic><topic>core saturation characteristic</topic><topic>deterministic assessment approach</topic><topic>dip frequency pattern</topic><topic>Disturbances. Regulation. Protection</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>energisation condition</topic><topic>Exact sciences and technology</topic><topic>field measurements</topic><topic>Monte Carlo methods</topic><topic>Monte Carlo simulation</topic><topic>network conditions</topic><topic>Power electronics, power supplies</topic><topic>Power networks and lines</topic><topic>power transformers</topic><topic>probability</topic><topic>residual flux distribution</topic><topic>stochastic assessment</topic><topic>stochastic nature</topic><topic>stochastic processes</topic><topic>transformer core residual flux</topic><topic>transformer energisation</topic><topic>Transformers and inductors</topic><topic>voltage 400 kV</topic><topic>voltage dips</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Jinsheng</creatorcontrib><creatorcontrib>Li, Haiyu</creatorcontrib><creatorcontrib>Wang, Zhongdong</creatorcontrib><creatorcontrib>Ghassemi, Foroozan</creatorcontrib><creatorcontrib>Jarman, Paul</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IET generation, transmission &amp; distribution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Peng, Jinsheng</au><au>Li, Haiyu</au><au>Wang, Zhongdong</au><au>Ghassemi, Foroozan</au><au>Jarman, Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic assessment of voltage dips caused by transformer energisation</atitle><jtitle>IET generation, transmission &amp; distribution</jtitle><date>2013-12</date><risdate>2013</risdate><volume>7</volume><issue>12</issue><spage>1383</spage><epage>1390</epage><pages>1383-1390</pages><issn>1751-8687</issn><issn>1751-8695</issn><eissn>1751-8695</eissn><abstract>Energisation of large power transformers may cause significant voltage dips, of which the severity largely depends on a number of parameters, including circuit breaker closing time, transformer core residual flux and core saturation characteristic, and network conditions. Since most of the parameters are of stochastic nature, Monte Carlo simulation was conducted in this study to stochastically assess the voltage dips caused by transformer energisation in a 400 kV grid, using a network model developed and validated against field measurements. A dip frequency pattern was identified over 1000 stochastic runs and it was found to be sensitive to residual flux distribution but insensitive to closing offset time distribution. The probability of reaching the worst case dip magnitude (estimated under the commonly agreed worst energisation condition) was found to be lower than 0.5%; about 80% of the dips are likely to be with magnitudes lower than 0.6 pu of the worst case. Nevertheless, there are dips with magnitudes exceeding the worst case dip magnitude, indicating the inadequacy of deterministic assessment approach by using the commonly agreed worst energisation condition.</abstract><cop>Stevenage</cop><pub>The Institution of Engineering and Technology</pub><doi>10.1049/iet-gtd.2013.0091</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1751-8687
ispartof IET generation, transmission & distribution, 2013-12, Vol.7 (12), p.1383-1390
issn 1751-8687
1751-8695
1751-8695
language eng
recordid cdi_pascalfrancis_primary_28001859
source Wiley Online Library Open Access
subjects Applied sciences
Assessments
circuit breaker closing time
circuit breakers
closing offset time distribution
Connection and protection apparatus
core saturation characteristic
deterministic assessment approach
dip frequency pattern
Disturbances. Regulation. Protection
Electrical engineering. Electrical power engineering
Electrical power engineering
energisation condition
Exact sciences and technology
field measurements
Monte Carlo methods
Monte Carlo simulation
network conditions
Power electronics, power supplies
Power networks and lines
power transformers
probability
residual flux distribution
stochastic assessment
stochastic nature
stochastic processes
transformer core residual flux
transformer energisation
Transformers and inductors
voltage 400 kV
voltage dips
title Stochastic assessment of voltage dips caused by transformer energisation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T23%3A27%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20assessment%20of%20voltage%20dips%20caused%20by%20transformer%20energisation&rft.jtitle=IET%20generation,%20transmission%20&%20distribution&rft.au=Peng,%20Jinsheng&rft.date=2013-12&rft.volume=7&rft.issue=12&rft.spage=1383&rft.epage=1390&rft.pages=1383-1390&rft.issn=1751-8687&rft.eissn=1751-8695&rft_id=info:doi/10.1049/iet-gtd.2013.0091&rft_dat=%3Cproquest_24P%3E1494360935%3C/proquest_24P%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5024-14ffb998d0529b266c20088e6f596356edaf5af8d5f0520d42223d14e58fa1183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1471055082&rft_id=info:pmid/&rfr_iscdi=true