Loading…

Forest calcium depletion and biotic retention along a soil nitrogen gradient

High nitrogen (N) accumulation in terrestrial ecosystems can shift patterns of nutrient limitation and deficiency beyond N toward other nutrients, most notably phosphorus (P) and base cations (calcium [Ca], magnesium [Mg], and potassium [K]). We examined how naturally high N accumulation from a lega...

Full description

Saved in:
Bibliographic Details
Published in:Ecological applications 2013-12, Vol.23 (8), p.1947-1961
Main Authors: Perakis, Steven S, Sinkhorn, Emily R, Catricala, Christina E, Bullen, Thomas D, Fitzpatrick, John A, Hynicka, Justin D, Cromack, Kermit
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:High nitrogen (N) accumulation in terrestrial ecosystems can shift patterns of nutrient limitation and deficiency beyond N toward other nutrients, most notably phosphorus (P) and base cations (calcium [Ca], magnesium [Mg], and potassium [K]). We examined how naturally high N accumulation from a legacy of symbiotic N fixation shaped P and base cation cycling across a gradient of nine temperate conifer forests in the Oregon Coast Range. We were particularly interested in whether long-term legacies of symbiotic N fixation promoted coupled N and organic P accumulation in soils, and whether biotic demands by non-fixing vegetation could conserve ecosystem base cations as N accumulated. Total soil N (0-100 cm) pools increased nearly threefold across the N gradient, leading to increased nitrate leaching, declines in soil pH from 5.8 to 4.2, 10-fold declines in soil exchangeable Ca, Mg, and K, and increased mobilization of aluminum. These results suggest that long-term N enrichment had acidified soils and depleted much of the readily weatherable base cation pool. Soil organic P increased with both soil N and C across the gradient, but soil inorganic P, biomass P, and P leaching loss did not vary with N, implying that historic symbiotic N fixation promoted soil organic P accumulation and P sufficiency for non-fixers. Even though soil pools of Ca, Mg, and K all declined as soil N increased, only Ca declined in biomass pools, suggesting the emergence of Ca deficiency at high N. Biotic conservation and tight recycling of Ca increased in response to whole-ecosystem Ca depletion, as indicated by preferential accumulation of Ca in biomass and surface soil. Our findings support a hierarchical model of coupled N-Ca cycling under long-term soil N enrichment, whereby ecosystem-level N saturation and nitrate leaching deplete readily available soil Ca, stimulating biotic Ca conservation as overall supply diminishes. We conclude that a legacy of biological N fixation can increase N and P accumulation in soil organic matter to the point that neither nutrient is limiting to subsequent non-fixers, while also resulting in natural N saturation that intensifies base cation depletion and deficiency.
ISSN:1051-0761
1939-5582
DOI:10.1890/12-2204.1