Loading…

Perpetual pavement temperature prediction model

Structural capacities of flexible pavements are determined from surface deflection measurements. These deflections must be corrected to a standard load and/or a reference pavement temperature. A number of models are available to predict pavement temperature, but they may not be applicable to perpetu...

Full description

Saved in:
Bibliographic Details
Published in:Road materials and pavement design 2014-01, Vol.15 (1), p.55-65
Main Authors: Gedafa, Daba S., Hossain, Mustaque, Romanoschi, Stefan A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Structural capacities of flexible pavements are determined from surface deflection measurements. These deflections must be corrected to a standard load and/or a reference pavement temperature. A number of models are available to predict pavement temperature, but they may not be applicable to perpetual (thicker) asphalt pavements. Mid-depth pavement temperature was measured in six sessions on four perpetual pavement sections in Kansas. Data from five sessions were used to develop the prediction model based on four independent variables. Data from the last session were used to validate it. Predicted mid-depth pavement temperatures from the new model and three other models were compared with the measured mid-depth pavement temperature. Sensitivity of the model to changes in all independent variables was also investigated. The effect of mid-depth pavement temperature on the centre deflection of the falling weight deflectometer was also studied. The prediction model developed in this study yields mid-depth pavement temperature that is closest to the measured mid-depth temperature. It also results in lowest bias in terms of centre deflection. Predicted mid-depth pavement temperature is most sensitive to the time of day when measurements are made and least sensitive to the layer mid-depth thickness.
ISSN:1468-0629
2164-7402
DOI:10.1080/14680629.2013.852610