Loading…

Design and Optimization of Neodymium-Free SPOKE-Type Motor With Segmented Wing-Shaped PM

This paper proposes a new design of SPOKE-type PM brushless direct current (BLDC) motor without using neodymium PM (Nd-PM). The proposed model has an improved output characteristic as it uses the properties of the magnetic flux effect of the SPOKE-type motor with an additional pushing assistant magn...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on magnetics 2014-02, Vol.50 (2), p.865-868
Main Authors: Rahman, Mohammad Mizanoor, Kyung-Tae Kim, Jin Hur
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper proposes a new design of SPOKE-type PM brushless direct current (BLDC) motor without using neodymium PM (Nd-PM). The proposed model has an improved output characteristic as it uses the properties of the magnetic flux effect of the SPOKE-type motor with an additional pushing assistant magnet and subassistant magnet in the shape of spoke. In this paper, ferrite PM (Fe-PM) is used instead of Nd-PM. First, the air-gap flux density and backelectromotive force (BEMF) are obtained based on the field model. Second, the analytical expressions of magnet field strength and magnet flux density are obtained in the air gap produced by Fe-PM. The developed analytical model is obtained by solving the magnetic scalar potential. Finally, the air-gap field distribution and BEMF of SPOKE-type motor are analyzed. The analysis works for internal rotor motor topologies. This paper validates results of the analytical model by finite-element analysis for wing-shaped SPOKE-type BLDC motors.
ISSN:0018-9464
1941-0069
DOI:10.1109/TMAG.2013.2282151