Loading…

Fixed-Lag Smoothing for Bayes Optimal Knowledge Exploitation in Target Tracking

In this work, we are interested in the improvements attainable when multiscan processing of external knowledge is performed over a moving time window. We propose a novel algorithm that enforces the state constraints by using a Fixed-Lag Smoothing procedure within the prediction step of the Bayesian...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal processing 2014-06, Vol.62 (12), p.3143-3152
Main Authors: Papi, Francesco, Bocquel, Melanie, Podt, Martin, Boers, Yvo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c321t-ec21655094013755ceb914349677df90aee90305d956d47142f9c5b7070d9b13
cites cdi_FETCH-LOGICAL-c321t-ec21655094013755ceb914349677df90aee90305d956d47142f9c5b7070d9b13
container_end_page 3152
container_issue 12
container_start_page 3143
container_title IEEE transactions on signal processing
container_volume 62
creator Papi, Francesco
Bocquel, Melanie
Podt, Martin
Boers, Yvo
description In this work, we are interested in the improvements attainable when multiscan processing of external knowledge is performed over a moving time window. We propose a novel algorithm that enforces the state constraints by using a Fixed-Lag Smoothing procedure within the prediction step of the Bayesian recursion. For proving the improvements, we utilize differential entropy as a measure of uncertainty and show that the approach guarantees a lower or equal posterior differential entropy than classical single-step constrained filtering. Simulation results using examples for single-target tracking are presented to verify that a Sequential Monte Carlo implementation of the proposed algorithm guarantees an improved tracking accuracy.
doi_str_mv 10.1109/TSP.2014.2321731
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_28604178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6810172</ieee_id><sourcerecordid>3443544261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-ec21655094013755ceb914349677df90aee90305d956d47142f9c5b7070d9b13</originalsourceid><addsrcrecordid>eNo9kNFLwzAQxosoOKfvgi8B8bHzLk2a5lFlU3EwYX3wrWRtWjO7ZiYdbv-9GRt7uoP7fd_dfVF0izBCBPmYzz9HFJCNaEJRJHgWDVAyjIGJ9Dz0wJOYZ-LrMrryfgmBZDIdRLOJ2eoqnqqGzFfW9t-ma0htHXlWO-3JbN2blWrJR2f_Wl01moy369aaXvXGdsR0JFeu0T3JnSp_gvY6uqhV6_XNsQ6jfDLOX97i6ez1_eVpGpfhvD7WJcWUc5AMMBGcl3ohkSXhJCGqWoLSWkICvJI8rZhARmtZ8oUAAZVcYDKM7g-2a2d_N9r3xdJuXBc2FsiDMZVSsEDBgSqd9d7puli78I7bFQjFPrUipFbsUyuOqQXJw9FY-VK1tVNdafxJR7MUGIoscHcHzmitT-M0Q0BBk3-6PHOU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1565529974</pqid></control><display><type>article</type><title>Fixed-Lag Smoothing for Bayes Optimal Knowledge Exploitation in Target Tracking</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Papi, Francesco ; Bocquel, Melanie ; Podt, Martin ; Boers, Yvo</creator><creatorcontrib>Papi, Francesco ; Bocquel, Melanie ; Podt, Martin ; Boers, Yvo</creatorcontrib><description>In this work, we are interested in the improvements attainable when multiscan processing of external knowledge is performed over a moving time window. We propose a novel algorithm that enforces the state constraints by using a Fixed-Lag Smoothing procedure within the prediction step of the Bayesian recursion. For proving the improvements, we utilize differential entropy as a measure of uncertainty and show that the approach guarantees a lower or equal posterior differential entropy than classical single-step constrained filtering. Simulation results using examples for single-target tracking are presented to verify that a Sequential Monte Carlo implementation of the proposed algorithm guarantees an improved tracking accuracy.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2014.2321731</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Approximation methods ; Bayes methods ; constrained filtering ; Detection, estimation, filtering, equalization, prediction ; differential entropy ; Entropy ; Exact sciences and technology ; External knowledge ; fixed-lag smoothing ; Information, signal and communications theory ; Radar tracking ; sequential Monte Carlo ; Signal and communications theory ; Signal, noise ; Smoothing methods ; Target tracking ; Telecommunications and information theory ; Uncertainty</subject><ispartof>IEEE transactions on signal processing, 2014-06, Vol.62 (12), p.3143-3152</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-ec21655094013755ceb914349677df90aee90305d956d47142f9c5b7070d9b13</citedby><cites>FETCH-LOGICAL-c321t-ec21655094013755ceb914349677df90aee90305d956d47142f9c5b7070d9b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6810172$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28604178$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Papi, Francesco</creatorcontrib><creatorcontrib>Bocquel, Melanie</creatorcontrib><creatorcontrib>Podt, Martin</creatorcontrib><creatorcontrib>Boers, Yvo</creatorcontrib><title>Fixed-Lag Smoothing for Bayes Optimal Knowledge Exploitation in Target Tracking</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>In this work, we are interested in the improvements attainable when multiscan processing of external knowledge is performed over a moving time window. We propose a novel algorithm that enforces the state constraints by using a Fixed-Lag Smoothing procedure within the prediction step of the Bayesian recursion. For proving the improvements, we utilize differential entropy as a measure of uncertainty and show that the approach guarantees a lower or equal posterior differential entropy than classical single-step constrained filtering. Simulation results using examples for single-target tracking are presented to verify that a Sequential Monte Carlo implementation of the proposed algorithm guarantees an improved tracking accuracy.</description><subject>Applied sciences</subject><subject>Approximation methods</subject><subject>Bayes methods</subject><subject>constrained filtering</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>differential entropy</subject><subject>Entropy</subject><subject>Exact sciences and technology</subject><subject>External knowledge</subject><subject>fixed-lag smoothing</subject><subject>Information, signal and communications theory</subject><subject>Radar tracking</subject><subject>sequential Monte Carlo</subject><subject>Signal and communications theory</subject><subject>Signal, noise</subject><subject>Smoothing methods</subject><subject>Target tracking</subject><subject>Telecommunications and information theory</subject><subject>Uncertainty</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kNFLwzAQxosoOKfvgi8B8bHzLk2a5lFlU3EwYX3wrWRtWjO7ZiYdbv-9GRt7uoP7fd_dfVF0izBCBPmYzz9HFJCNaEJRJHgWDVAyjIGJ9Dz0wJOYZ-LrMrryfgmBZDIdRLOJ2eoqnqqGzFfW9t-ma0htHXlWO-3JbN2blWrJR2f_Wl01moy369aaXvXGdsR0JFeu0T3JnSp_gvY6uqhV6_XNsQ6jfDLOX97i6ez1_eVpGpfhvD7WJcWUc5AMMBGcl3ohkSXhJCGqWoLSWkICvJI8rZhARmtZ8oUAAZVcYDKM7g-2a2d_N9r3xdJuXBc2FsiDMZVSsEDBgSqd9d7puli78I7bFQjFPrUipFbsUyuOqQXJw9FY-VK1tVNdafxJR7MUGIoscHcHzmitT-M0Q0BBk3-6PHOU</recordid><startdate>20140615</startdate><enddate>20140615</enddate><creator>Papi, Francesco</creator><creator>Bocquel, Melanie</creator><creator>Podt, Martin</creator><creator>Boers, Yvo</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140615</creationdate><title>Fixed-Lag Smoothing for Bayes Optimal Knowledge Exploitation in Target Tracking</title><author>Papi, Francesco ; Bocquel, Melanie ; Podt, Martin ; Boers, Yvo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-ec21655094013755ceb914349677df90aee90305d956d47142f9c5b7070d9b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Approximation methods</topic><topic>Bayes methods</topic><topic>constrained filtering</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>differential entropy</topic><topic>Entropy</topic><topic>Exact sciences and technology</topic><topic>External knowledge</topic><topic>fixed-lag smoothing</topic><topic>Information, signal and communications theory</topic><topic>Radar tracking</topic><topic>sequential Monte Carlo</topic><topic>Signal and communications theory</topic><topic>Signal, noise</topic><topic>Smoothing methods</topic><topic>Target tracking</topic><topic>Telecommunications and information theory</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Papi, Francesco</creatorcontrib><creatorcontrib>Bocquel, Melanie</creatorcontrib><creatorcontrib>Podt, Martin</creatorcontrib><creatorcontrib>Boers, Yvo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Papi, Francesco</au><au>Bocquel, Melanie</au><au>Podt, Martin</au><au>Boers, Yvo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fixed-Lag Smoothing for Bayes Optimal Knowledge Exploitation in Target Tracking</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2014-06-15</date><risdate>2014</risdate><volume>62</volume><issue>12</issue><spage>3143</spage><epage>3152</epage><pages>3143-3152</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>In this work, we are interested in the improvements attainable when multiscan processing of external knowledge is performed over a moving time window. We propose a novel algorithm that enforces the state constraints by using a Fixed-Lag Smoothing procedure within the prediction step of the Bayesian recursion. For proving the improvements, we utilize differential entropy as a measure of uncertainty and show that the approach guarantees a lower or equal posterior differential entropy than classical single-step constrained filtering. Simulation results using examples for single-target tracking are presented to verify that a Sequential Monte Carlo implementation of the proposed algorithm guarantees an improved tracking accuracy.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2014.2321731</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2014-06, Vol.62 (12), p.3143-3152
issn 1053-587X
1941-0476
language eng
recordid cdi_pascalfrancis_primary_28604178
source IEEE Electronic Library (IEL) Journals
subjects Applied sciences
Approximation methods
Bayes methods
constrained filtering
Detection, estimation, filtering, equalization, prediction
differential entropy
Entropy
Exact sciences and technology
External knowledge
fixed-lag smoothing
Information, signal and communications theory
Radar tracking
sequential Monte Carlo
Signal and communications theory
Signal, noise
Smoothing methods
Target tracking
Telecommunications and information theory
Uncertainty
title Fixed-Lag Smoothing for Bayes Optimal Knowledge Exploitation in Target Tracking
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A53%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fixed-Lag%20Smoothing%20for%20Bayes%20Optimal%20Knowledge%20Exploitation%20in%20Target%20Tracking&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Papi,%20Francesco&rft.date=2014-06-15&rft.volume=62&rft.issue=12&rft.spage=3143&rft.epage=3152&rft.pages=3143-3152&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2014.2321731&rft_dat=%3Cproquest_pasca%3E3443544261%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c321t-ec21655094013755ceb914349677df90aee90305d956d47142f9c5b7070d9b13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1565529974&rft_id=info:pmid/&rft_ieee_id=6810172&rfr_iscdi=true