Loading…

Optimization of UHMWPE/Graphene Nanocomposite Processing using Ziegler-Natta Catalytic System via Response Surface Methodology

Optimization of operational conditions for the preparation of Ultrahigh-molecular-weight polyethylene (UHMWPE)/Graphene nanocomposites with Ziegler-Natta catalyst was carried out via response surface methodology (RSM). This study deals with the optimization of process variables to optimize the produ...

Full description

Saved in:
Bibliographic Details
Published in:Polymer-plastics technology and engineering 2014-06, Vol.53 (9), p.969-974
Main Authors: Shafiee, M., Ramazani S. A., A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c463t-d5ccc6b4da4e5eb03f1f57b436b5ac1cef034515d630432c6ddfce9121145c243
cites cdi_FETCH-LOGICAL-c463t-d5ccc6b4da4e5eb03f1f57b436b5ac1cef034515d630432c6ddfce9121145c243
container_end_page 974
container_issue 9
container_start_page 969
container_title Polymer-plastics technology and engineering
container_volume 53
creator Shafiee, M.
Ramazani S. A., A.
description Optimization of operational conditions for the preparation of Ultrahigh-molecular-weight polyethylene (UHMWPE)/Graphene nanocomposites with Ziegler-Natta catalyst was carried out via response surface methodology (RSM). This study deals with the optimization of process variables to optimize the productivity and molecular weight. A three-factor, three-level Box-Behnken design with temperature (X 1 ), monomer pressure (X 2 ), and [Al]/[Ti] molar ratio (X 3 ) as the independent variables were selected for the study. The dependent variables were productivity and molecular weights of the final nanocomposites. It was developed by using the three parameters at three levels including 50, 60, and 70°C for temperature; 4, 6, and 8 bar for pressure; and 176, 318, and 460 for [Al]/[Ti] molar ratios. The optimum reaction conditions derived via RSM were: temperature 60°C, pressure 8 bar, and [Al]/[Ti] molar ratio 242. Productivity and molecular weight were 2107 g PE/mmol Ti.h and 3.7 × 10 6  g/mol, respectively, under optimum conditions. Morphological information was determined by using X-ray diffraction (XRD) and scanning electron microscopy (SEM). Obtained results show that graphene layers in these nanocomposites were completely exfoliated and dispersed uniformly in the polyethylene matrix while no nanoparticle cluster was formed.
doi_str_mv 10.1080/03602559.2014.886067
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_28612728</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3089965854</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-d5ccc6b4da4e5eb03f1f57b436b5ac1cef034515d630432c6ddfce9121145c243</originalsourceid><addsrcrecordid>eNp90ctq3DAUBmBTWug06Rt0ISiFbjyRrIvtVSlDmhRyI2kodCPOyEcTBdtyJbnFWeTZ68kkXWSRjYTg-4-E_iz7wOiS0YoeUK5oIWW9LCgTy6pSVJWvsgWThcwVY-x1ttiSfGveZu9ivKWUlvNpkd2fD8l17g6S8z3xllwfn_68ODw4CjDcYI_kDHpvfDf46BKSi-ANxuj6DRkf1l8ONy2G_AxSArKCBO2UnCFXU0zYkT8OyCXGwfcRydUYLBgkp5hufONbv5n2szcW2ojvH_e97Prb4Y_VcX5yfvR99fUkN0LxlDfSGKPWogGBEteUW2ZluRZcrSUYZtBSLiSTjeJU8MKoprEGa1YwJqQpBN_LPu_mDsH_HjEm3blosG2hRz9GzaScf1JSWc_04zN668fQz6_TnFZ1rWQlxUuKSU55yXhJZyV2ygQfY0Crh-A6CJNmVG-r00_V6W11elfdHPv0OByigdYG6I2L_7NFpVhRFtXsvuyc660PHfz1oW10gqn14SnEX7zpHy21rSQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1530371370</pqid></control><display><type>article</type><title>Optimization of UHMWPE/Graphene Nanocomposite Processing using Ziegler-Natta Catalytic System via Response Surface Methodology</title><source>Taylor and Francis Science and Technology Collection</source><creator>Shafiee, M. ; Ramazani S. A., A.</creator><creatorcontrib>Shafiee, M. ; Ramazani S. A., A.</creatorcontrib><description>Optimization of operational conditions for the preparation of Ultrahigh-molecular-weight polyethylene (UHMWPE)/Graphene nanocomposites with Ziegler-Natta catalyst was carried out via response surface methodology (RSM). This study deals with the optimization of process variables to optimize the productivity and molecular weight. A three-factor, three-level Box-Behnken design with temperature (X 1 ), monomer pressure (X 2 ), and [Al]/[Ti] molar ratio (X 3 ) as the independent variables were selected for the study. The dependent variables were productivity and molecular weights of the final nanocomposites. It was developed by using the three parameters at three levels including 50, 60, and 70°C for temperature; 4, 6, and 8 bar for pressure; and 176, 318, and 460 for [Al]/[Ti] molar ratios. The optimum reaction conditions derived via RSM were: temperature 60°C, pressure 8 bar, and [Al]/[Ti] molar ratio 242. Productivity and molecular weight were 2107 g PE/mmol Ti.h and 3.7 × 10 6  g/mol, respectively, under optimum conditions. Morphological information was determined by using X-ray diffraction (XRD) and scanning electron microscopy (SEM). Obtained results show that graphene layers in these nanocomposites were completely exfoliated and dispersed uniformly in the polyethylene matrix while no nanoparticle cluster was formed.</description><identifier>ISSN: 0360-2559</identifier><identifier>EISSN: 1525-6111</identifier><identifier>DOI: 10.1080/03602559.2014.886067</identifier><identifier>CODEN: PPTEC7</identifier><language>eng</language><publisher>Philadelphia, PA: Taylor &amp; Francis Group</publisher><subject>Aluminum ; Applied sciences ; Composites ; Dependent variables ; Exact sciences and technology ; Forms of application and semi-finished materials ; Graphene ; Independent variables ; Molecular weight ; Morphology ; Nanocomposites ; Nanostructure ; Optimization ; Polyethylene ; Polyethylenes ; Polymer industry, paints, wood ; Polymerization ; Process variables ; Productivity ; Response surface methodology ; Response surface methodology (RSM) ; Technology of polymers ; Titanium ; UHMWPE ; Ultra high molecular weight polyethylene ; Ziegler-Natta ; Ziegler-Natta catalysts</subject><ispartof>Polymer-plastics technology and engineering, 2014-06, Vol.53 (9), p.969-974</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2014</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Taylor &amp; Francis Group, LLC</rights><rights>Copyright Taylor &amp; Francis Group, LLC. 2014</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-d5ccc6b4da4e5eb03f1f57b436b5ac1cef034515d630432c6ddfce9121145c243</citedby><cites>FETCH-LOGICAL-c463t-d5ccc6b4da4e5eb03f1f57b436b5ac1cef034515d630432c6ddfce9121145c243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28612728$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Shafiee, M.</creatorcontrib><creatorcontrib>Ramazani S. A., A.</creatorcontrib><title>Optimization of UHMWPE/Graphene Nanocomposite Processing using Ziegler-Natta Catalytic System via Response Surface Methodology</title><title>Polymer-plastics technology and engineering</title><description>Optimization of operational conditions for the preparation of Ultrahigh-molecular-weight polyethylene (UHMWPE)/Graphene nanocomposites with Ziegler-Natta catalyst was carried out via response surface methodology (RSM). This study deals with the optimization of process variables to optimize the productivity and molecular weight. A three-factor, three-level Box-Behnken design with temperature (X 1 ), monomer pressure (X 2 ), and [Al]/[Ti] molar ratio (X 3 ) as the independent variables were selected for the study. The dependent variables were productivity and molecular weights of the final nanocomposites. It was developed by using the three parameters at three levels including 50, 60, and 70°C for temperature; 4, 6, and 8 bar for pressure; and 176, 318, and 460 for [Al]/[Ti] molar ratios. The optimum reaction conditions derived via RSM were: temperature 60°C, pressure 8 bar, and [Al]/[Ti] molar ratio 242. Productivity and molecular weight were 2107 g PE/mmol Ti.h and 3.7 × 10 6  g/mol, respectively, under optimum conditions. Morphological information was determined by using X-ray diffraction (XRD) and scanning electron microscopy (SEM). Obtained results show that graphene layers in these nanocomposites were completely exfoliated and dispersed uniformly in the polyethylene matrix while no nanoparticle cluster was formed.</description><subject>Aluminum</subject><subject>Applied sciences</subject><subject>Composites</subject><subject>Dependent variables</subject><subject>Exact sciences and technology</subject><subject>Forms of application and semi-finished materials</subject><subject>Graphene</subject><subject>Independent variables</subject><subject>Molecular weight</subject><subject>Morphology</subject><subject>Nanocomposites</subject><subject>Nanostructure</subject><subject>Optimization</subject><subject>Polyethylene</subject><subject>Polyethylenes</subject><subject>Polymer industry, paints, wood</subject><subject>Polymerization</subject><subject>Process variables</subject><subject>Productivity</subject><subject>Response surface methodology</subject><subject>Response surface methodology (RSM)</subject><subject>Technology of polymers</subject><subject>Titanium</subject><subject>UHMWPE</subject><subject>Ultra high molecular weight polyethylene</subject><subject>Ziegler-Natta</subject><subject>Ziegler-Natta catalysts</subject><issn>0360-2559</issn><issn>1525-6111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp90ctq3DAUBmBTWug06Rt0ISiFbjyRrIvtVSlDmhRyI2kodCPOyEcTBdtyJbnFWeTZ68kkXWSRjYTg-4-E_iz7wOiS0YoeUK5oIWW9LCgTy6pSVJWvsgWThcwVY-x1ttiSfGveZu9ivKWUlvNpkd2fD8l17g6S8z3xllwfn_68ODw4CjDcYI_kDHpvfDf46BKSi-ANxuj6DRkf1l8ONy2G_AxSArKCBO2UnCFXU0zYkT8OyCXGwfcRydUYLBgkp5hufONbv5n2szcW2ojvH_e97Prb4Y_VcX5yfvR99fUkN0LxlDfSGKPWogGBEteUW2ZluRZcrSUYZtBSLiSTjeJU8MKoprEGa1YwJqQpBN_LPu_mDsH_HjEm3blosG2hRz9GzaScf1JSWc_04zN668fQz6_TnFZ1rWQlxUuKSU55yXhJZyV2ygQfY0Crh-A6CJNmVG-r00_V6W11elfdHPv0OByigdYG6I2L_7NFpVhRFtXsvuyc660PHfz1oW10gqn14SnEX7zpHy21rSQ</recordid><startdate>20140623</startdate><enddate>20140623</enddate><creator>Shafiee, M.</creator><creator>Ramazani S. A., A.</creator><general>Taylor &amp; Francis Group</general><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>20140623</creationdate><title>Optimization of UHMWPE/Graphene Nanocomposite Processing using Ziegler-Natta Catalytic System via Response Surface Methodology</title><author>Shafiee, M. ; Ramazani S. A., A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-d5ccc6b4da4e5eb03f1f57b436b5ac1cef034515d630432c6ddfce9121145c243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aluminum</topic><topic>Applied sciences</topic><topic>Composites</topic><topic>Dependent variables</topic><topic>Exact sciences and technology</topic><topic>Forms of application and semi-finished materials</topic><topic>Graphene</topic><topic>Independent variables</topic><topic>Molecular weight</topic><topic>Morphology</topic><topic>Nanocomposites</topic><topic>Nanostructure</topic><topic>Optimization</topic><topic>Polyethylene</topic><topic>Polyethylenes</topic><topic>Polymer industry, paints, wood</topic><topic>Polymerization</topic><topic>Process variables</topic><topic>Productivity</topic><topic>Response surface methodology</topic><topic>Response surface methodology (RSM)</topic><topic>Technology of polymers</topic><topic>Titanium</topic><topic>UHMWPE</topic><topic>Ultra high molecular weight polyethylene</topic><topic>Ziegler-Natta</topic><topic>Ziegler-Natta catalysts</topic><toplevel>online_resources</toplevel><creatorcontrib>Shafiee, M.</creatorcontrib><creatorcontrib>Ramazani S. A., A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Polymer-plastics technology and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shafiee, M.</au><au>Ramazani S. A., A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of UHMWPE/Graphene Nanocomposite Processing using Ziegler-Natta Catalytic System via Response Surface Methodology</atitle><jtitle>Polymer-plastics technology and engineering</jtitle><date>2014-06-23</date><risdate>2014</risdate><volume>53</volume><issue>9</issue><spage>969</spage><epage>974</epage><pages>969-974</pages><issn>0360-2559</issn><eissn>1525-6111</eissn><coden>PPTEC7</coden><abstract>Optimization of operational conditions for the preparation of Ultrahigh-molecular-weight polyethylene (UHMWPE)/Graphene nanocomposites with Ziegler-Natta catalyst was carried out via response surface methodology (RSM). This study deals with the optimization of process variables to optimize the productivity and molecular weight. A three-factor, three-level Box-Behnken design with temperature (X 1 ), monomer pressure (X 2 ), and [Al]/[Ti] molar ratio (X 3 ) as the independent variables were selected for the study. The dependent variables were productivity and molecular weights of the final nanocomposites. It was developed by using the three parameters at three levels including 50, 60, and 70°C for temperature; 4, 6, and 8 bar for pressure; and 176, 318, and 460 for [Al]/[Ti] molar ratios. The optimum reaction conditions derived via RSM were: temperature 60°C, pressure 8 bar, and [Al]/[Ti] molar ratio 242. Productivity and molecular weight were 2107 g PE/mmol Ti.h and 3.7 × 10 6  g/mol, respectively, under optimum conditions. Morphological information was determined by using X-ray diffraction (XRD) and scanning electron microscopy (SEM). Obtained results show that graphene layers in these nanocomposites were completely exfoliated and dispersed uniformly in the polyethylene matrix while no nanoparticle cluster was formed.</abstract><cop>Philadelphia, PA</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/03602559.2014.886067</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0360-2559
ispartof Polymer-plastics technology and engineering, 2014-06, Vol.53 (9), p.969-974
issn 0360-2559
1525-6111
language eng
recordid cdi_pascalfrancis_primary_28612728
source Taylor and Francis Science and Technology Collection
subjects Aluminum
Applied sciences
Composites
Dependent variables
Exact sciences and technology
Forms of application and semi-finished materials
Graphene
Independent variables
Molecular weight
Morphology
Nanocomposites
Nanostructure
Optimization
Polyethylene
Polyethylenes
Polymer industry, paints, wood
Polymerization
Process variables
Productivity
Response surface methodology
Response surface methodology (RSM)
Technology of polymers
Titanium
UHMWPE
Ultra high molecular weight polyethylene
Ziegler-Natta
Ziegler-Natta catalysts
title Optimization of UHMWPE/Graphene Nanocomposite Processing using Ziegler-Natta Catalytic System via Response Surface Methodology
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A26%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20UHMWPE/Graphene%20Nanocomposite%20Processing%20using%20Ziegler-Natta%20Catalytic%20System%20via%20Response%20Surface%20Methodology&rft.jtitle=Polymer-plastics%20technology%20and%20engineering&rft.au=Shafiee,%20M.&rft.date=2014-06-23&rft.volume=53&rft.issue=9&rft.spage=969&rft.epage=974&rft.pages=969-974&rft.issn=0360-2559&rft.eissn=1525-6111&rft.coden=PPTEC7&rft_id=info:doi/10.1080/03602559.2014.886067&rft_dat=%3Cproquest_pasca%3E3089965854%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c463t-d5ccc6b4da4e5eb03f1f57b436b5ac1cef034515d630432c6ddfce9121145c243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1530371370&rft_id=info:pmid/&rfr_iscdi=true