Loading…
Magnet Design of the 150 mm Aperture Low- \beta Quadrupoles for the High Luminosity LHC
The high luminosity LHC (HL-LHC) project is aimed at studying and implementing the necessary changes in the LHC to increase its luminosity by a factor of five. Among the magnets that will be upgraded are the 16 superconducting low-β quadrupoles placed around the two high luminosity interaction regio...
Saved in:
Published in: | IEEE transactions on applied superconductivity 2014-06, Vol.24 (3), p.1-6 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The high luminosity LHC (HL-LHC) project is aimed at studying and implementing the necessary changes in the LHC to increase its luminosity by a factor of five. Among the magnets that will be upgraded are the 16 superconducting low-β quadrupoles placed around the two high luminosity interaction regions (ATLAS and CMS experiments). In the current baseline scenario, these quadrupole magnets will have to generate a gradient of 140 T/m in a coil aperture of 150 mm. The resulting conductor peak field of more than 12 T will require the use of Nb 3 Sn superconducting coils. We present in this paper the HL-LHC low-β quadrupole design, based on the experience gathered by the US LARP program, and, in particular, we describe the support structure components to pre-load the coils, withstand the electro-magnetic forces, provide alignment and LHe containment, and integrate the cold mass in the LHC IRs. |
---|---|
ISSN: | 1051-8223 1558-2515 |
DOI: | 10.1109/TASC.2013.2284970 |