Loading…
Texture and edge preserving multiframe super-resolution
Super-resolution (SR) image reconstruction refers to methods where a higher resolution image is reconstructed using a set of overlapping aliased low-resolution observations of the same scene. Although edge preservation has been a widely explored topic in SR literature, texture-specific regularisatio...
Saved in:
Published in: | IET image processing 2014-09, Vol.8 (9), p.499-508 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Super-resolution (SR) image reconstruction refers to methods where a higher resolution image is reconstructed using a set of overlapping aliased low-resolution observations of the same scene. Although edge preservation has been a widely explored topic in SR literature, texture-specific regularisation has recently gained interest. In this study, texture-specific regularisation is handled as a post-processing step. A two stage method is proposed, comprising multiple SR reconstructions with different regularisation parameters followed by a restoration step for preserving edges and textures. In the first stage, two maximum-a-posteriori estimators with two different amounts of regularisation are employed. In the second stage, pixel-to-pixel difference between these two estimates is post-processed to restore edges and textures. Frequency selective characteristics of discrete cosine transform and Gabor filters are utilised in the post-processing step. Experiments on synthetically generated images and real experiments demonstrate that the proposed methods give better results compared with the state-of-the-art SR methods especially on textures and edges. |
---|---|
ISSN: | 1751-9659 1751-9667 1751-9667 |
DOI: | 10.1049/iet-ipr.2013.0342 |