Loading…
High breakdown-strength composites from liquid silicone rubbers
In this paper we investigate the performance of liquid silicone rubbers (LSRs) as dielectric elastomer transducers. Commonly used silicones in this application include room-temperature vulcanisable (RTV) silicone elastomers and composites thereof. Pure LSRs and their composites with commercially ava...
Saved in:
Published in: | Smart materials and structures 2014-10, Vol.23 (10), p.105017-15 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper we investigate the performance of liquid silicone rubbers (LSRs) as dielectric elastomer transducers. Commonly used silicones in this application include room-temperature vulcanisable (RTV) silicone elastomers and composites thereof. Pure LSRs and their composites with commercially available fillers (an anatase TiO2, a core-shell TiO2-SiO2 and a CaCu3Ti4O12 filler) are evaluated with respect to dielectric permittivity, elasticity (Young's modulus) and electrical breakdown strength. Film formation properties are also evaluated. The best-performing formulations are those with anatase TiO2 nanoparticles, where the highest relative dielectric permittivity of 5.6 is obtained, and with STX801, a core-shell morphology TiO2-SiO2 filler from Evonik, where the highest breakdown strength of 173 V m−1 is obtained. |
---|---|
ISSN: | 0964-1726 1361-665X |
DOI: | 10.1088/0964-1726/23/10/105017 |