Loading…
InxGa1−xN performance as a band-gap-tunable photo-electrode in acidic and basic solutions
Performance of InxGa1−xN photo-electrodes at concentrations of In ranging from 0 to 100 % was investigated in basic and acidic solutions under 1 Sun illumination. Photocorrosive effects of InxGa1−xN samples in aqueous solutions are revealed and strategies for a more efficient use of these electrodes...
Saved in:
Published in: | Solar energy materials and solar cells 2014-11, Vol.130, p.36-41 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 41 |
container_issue | |
container_start_page | 36 |
container_title | Solar energy materials and solar cells |
container_volume | 130 |
creator | Juodkazytė, Jurga Šebeka, Benjaminas Savickaja, Irena Kadys, Arūnas Jelmakas, Edgaras Grinys, Tomas Juodkazis, Saulius Juodkazis, Kȩstutis Malinauskas, Tadas |
description | Performance of InxGa1−xN photo-electrodes at concentrations of In ranging from 0 to 100 % was investigated in basic and acidic solutions under 1 Sun illumination. Photocorrosive effects of InxGa1−xN samples in aqueous solutions are revealed and strategies for a more efficient use of these electrodes are discussed. Formation of Ga2O3 phase and N2 under photoanodic conditions can explain the photo-corrosive effect. It is shown that the product of charge carrier density and mobility, n×μ, scales with the photo-current density in GaN.
[Display omitted]
•Photo-corrosion of InGaN under direct water splitting occurs via formation of Ga-oxide.•Hydrogen evolution is possible on Pt counter-electrode for a small up to 0.1 fraction of In.•Solar energy harvesting by changing the bandgap of InGaN controlled by In concentration. |
doi_str_mv | 10.1016/j.solmat.2014.06.033 |
format | article |
fullrecord | <record><control><sourceid>elsevier_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_28858412</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927024814003420</els_id><sourcerecordid>S0927024814003420</sourcerecordid><originalsourceid>FETCH-LOGICAL-e155t-f97100a4381f428d2f1a901ac2482f1784be36f8a2eb401e9ec861f9baead31d3</originalsourceid><addsrcrecordid>eNotkL1OwzAUhS0EEqXwBgxeGBN8bTd1FiRUQalUwQITg3XjH3CVJpGdovIGzDwiT4JRme4ZPl2d8xFyCawEBtX1pkx9u8Wx5AxkyaqSCXFEJqDmdSFErY7JhNV8XjAu1Sk5S2nDGOOVkBPyuur2S4Sfr-_9Ix1c9H3cYmccxUSRNtjZ4g2HYtx12LSODu_92BeudWaMvXU0dBRNsMHQTGY85ZS77MbQd-mcnHhsk7v4v1Pycn_3vHgo1k_L1eJ2XTiYzcbC13NgDKVQ4CVXlnvAmgGa3DbnuZKNE5VXyF0jGbjaGVWBrxt0aAVYMSVXh78DJoOtj3lASHqIYYvxU3OlZkoCz9zNgXO5zEdwUScTXB5rQ8yDtO2DBqb_lOqNPijVf0o1q3RWKn4BmGluGQ</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>InxGa1−xN performance as a band-gap-tunable photo-electrode in acidic and basic solutions</title><source>Elsevier</source><creator>Juodkazytė, Jurga ; Šebeka, Benjaminas ; Savickaja, Irena ; Kadys, Arūnas ; Jelmakas, Edgaras ; Grinys, Tomas ; Juodkazis, Saulius ; Juodkazis, Kȩstutis ; Malinauskas, Tadas</creator><creatorcontrib>Juodkazytė, Jurga ; Šebeka, Benjaminas ; Savickaja, Irena ; Kadys, Arūnas ; Jelmakas, Edgaras ; Grinys, Tomas ; Juodkazis, Saulius ; Juodkazis, Kȩstutis ; Malinauskas, Tadas</creatorcontrib><description>Performance of InxGa1−xN photo-electrodes at concentrations of In ranging from 0 to 100 % was investigated in basic and acidic solutions under 1 Sun illumination. Photocorrosive effects of InxGa1−xN samples in aqueous solutions are revealed and strategies for a more efficient use of these electrodes are discussed. Formation of Ga2O3 phase and N2 under photoanodic conditions can explain the photo-corrosive effect. It is shown that the product of charge carrier density and mobility, n×μ, scales with the photo-current density in GaN.
[Display omitted]
•Photo-corrosion of InGaN under direct water splitting occurs via formation of Ga-oxide.•Hydrogen evolution is possible on Pt counter-electrode for a small up to 0.1 fraction of In.•Solar energy harvesting by changing the bandgap of InGaN controlled by In concentration.</description><identifier>ISSN: 0927-0248</identifier><identifier>EISSN: 1879-3398</identifier><identifier>DOI: 10.1016/j.solmat.2014.06.033</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Alternative fuels. Production and utilization ; Applied sciences ; Chemistry ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemistry ; Energy ; Exact sciences and technology ; Fuels ; General and physical chemistry ; Hydrogen ; Hydrogen production ; InGaN solar cells ; Natural energy ; Photo-corrosion ; Photoelectric conversion ; Photoelectrochemistry. Electrochemiluminescence ; Photovoltaic conversion ; Solar cells. Photoelectrochemical cells ; Solar energy ; Surface and interface chemistry ; Water splitting</subject><ispartof>Solar energy materials and solar cells, 2014-11, Vol.130, p.36-41</ispartof><rights>2014 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3542-3874</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28858412$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Juodkazytė, Jurga</creatorcontrib><creatorcontrib>Šebeka, Benjaminas</creatorcontrib><creatorcontrib>Savickaja, Irena</creatorcontrib><creatorcontrib>Kadys, Arūnas</creatorcontrib><creatorcontrib>Jelmakas, Edgaras</creatorcontrib><creatorcontrib>Grinys, Tomas</creatorcontrib><creatorcontrib>Juodkazis, Saulius</creatorcontrib><creatorcontrib>Juodkazis, Kȩstutis</creatorcontrib><creatorcontrib>Malinauskas, Tadas</creatorcontrib><title>InxGa1−xN performance as a band-gap-tunable photo-electrode in acidic and basic solutions</title><title>Solar energy materials and solar cells</title><description>Performance of InxGa1−xN photo-electrodes at concentrations of In ranging from 0 to 100 % was investigated in basic and acidic solutions under 1 Sun illumination. Photocorrosive effects of InxGa1−xN samples in aqueous solutions are revealed and strategies for a more efficient use of these electrodes are discussed. Formation of Ga2O3 phase and N2 under photoanodic conditions can explain the photo-corrosive effect. It is shown that the product of charge carrier density and mobility, n×μ, scales with the photo-current density in GaN.
[Display omitted]
•Photo-corrosion of InGaN under direct water splitting occurs via formation of Ga-oxide.•Hydrogen evolution is possible on Pt counter-electrode for a small up to 0.1 fraction of In.•Solar energy harvesting by changing the bandgap of InGaN controlled by In concentration.</description><subject>Alternative fuels. Production and utilization</subject><subject>Applied sciences</subject><subject>Chemistry</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemistry</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Fuels</subject><subject>General and physical chemistry</subject><subject>Hydrogen</subject><subject>Hydrogen production</subject><subject>InGaN solar cells</subject><subject>Natural energy</subject><subject>Photo-corrosion</subject><subject>Photoelectric conversion</subject><subject>Photoelectrochemistry. Electrochemiluminescence</subject><subject>Photovoltaic conversion</subject><subject>Solar cells. Photoelectrochemical cells</subject><subject>Solar energy</subject><subject>Surface and interface chemistry</subject><subject>Water splitting</subject><issn>0927-0248</issn><issn>1879-3398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNotkL1OwzAUhS0EEqXwBgxeGBN8bTd1FiRUQalUwQITg3XjH3CVJpGdovIGzDwiT4JRme4ZPl2d8xFyCawEBtX1pkx9u8Wx5AxkyaqSCXFEJqDmdSFErY7JhNV8XjAu1Sk5S2nDGOOVkBPyuur2S4Sfr-_9Ix1c9H3cYmccxUSRNtjZ4g2HYtx12LSODu_92BeudWaMvXU0dBRNsMHQTGY85ZS77MbQd-mcnHhsk7v4v1Pycn_3vHgo1k_L1eJ2XTiYzcbC13NgDKVQ4CVXlnvAmgGa3DbnuZKNE5VXyF0jGbjaGVWBrxt0aAVYMSVXh78DJoOtj3lASHqIYYvxU3OlZkoCz9zNgXO5zEdwUScTXB5rQ8yDtO2DBqb_lOqNPijVf0o1q3RWKn4BmGluGQ</recordid><startdate>201411</startdate><enddate>201411</enddate><creator>Juodkazytė, Jurga</creator><creator>Šebeka, Benjaminas</creator><creator>Savickaja, Irena</creator><creator>Kadys, Arūnas</creator><creator>Jelmakas, Edgaras</creator><creator>Grinys, Tomas</creator><creator>Juodkazis, Saulius</creator><creator>Juodkazis, Kȩstutis</creator><creator>Malinauskas, Tadas</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><orcidid>https://orcid.org/0000-0003-3542-3874</orcidid></search><sort><creationdate>201411</creationdate><title>InxGa1−xN performance as a band-gap-tunable photo-electrode in acidic and basic solutions</title><author>Juodkazytė, Jurga ; Šebeka, Benjaminas ; Savickaja, Irena ; Kadys, Arūnas ; Jelmakas, Edgaras ; Grinys, Tomas ; Juodkazis, Saulius ; Juodkazis, Kȩstutis ; Malinauskas, Tadas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e155t-f97100a4381f428d2f1a901ac2482f1784be36f8a2eb401e9ec861f9baead31d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Alternative fuels. Production and utilization</topic><topic>Applied sciences</topic><topic>Chemistry</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemistry</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Fuels</topic><topic>General and physical chemistry</topic><topic>Hydrogen</topic><topic>Hydrogen production</topic><topic>InGaN solar cells</topic><topic>Natural energy</topic><topic>Photo-corrosion</topic><topic>Photoelectric conversion</topic><topic>Photoelectrochemistry. Electrochemiluminescence</topic><topic>Photovoltaic conversion</topic><topic>Solar cells. Photoelectrochemical cells</topic><topic>Solar energy</topic><topic>Surface and interface chemistry</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Juodkazytė, Jurga</creatorcontrib><creatorcontrib>Šebeka, Benjaminas</creatorcontrib><creatorcontrib>Savickaja, Irena</creatorcontrib><creatorcontrib>Kadys, Arūnas</creatorcontrib><creatorcontrib>Jelmakas, Edgaras</creatorcontrib><creatorcontrib>Grinys, Tomas</creatorcontrib><creatorcontrib>Juodkazis, Saulius</creatorcontrib><creatorcontrib>Juodkazis, Kȩstutis</creatorcontrib><creatorcontrib>Malinauskas, Tadas</creatorcontrib><collection>Pascal-Francis</collection><jtitle>Solar energy materials and solar cells</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Juodkazytė, Jurga</au><au>Šebeka, Benjaminas</au><au>Savickaja, Irena</au><au>Kadys, Arūnas</au><au>Jelmakas, Edgaras</au><au>Grinys, Tomas</au><au>Juodkazis, Saulius</au><au>Juodkazis, Kȩstutis</au><au>Malinauskas, Tadas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>InxGa1−xN performance as a band-gap-tunable photo-electrode in acidic and basic solutions</atitle><jtitle>Solar energy materials and solar cells</jtitle><date>2014-11</date><risdate>2014</risdate><volume>130</volume><spage>36</spage><epage>41</epage><pages>36-41</pages><issn>0927-0248</issn><eissn>1879-3398</eissn><abstract>Performance of InxGa1−xN photo-electrodes at concentrations of In ranging from 0 to 100 % was investigated in basic and acidic solutions under 1 Sun illumination. Photocorrosive effects of InxGa1−xN samples in aqueous solutions are revealed and strategies for a more efficient use of these electrodes are discussed. Formation of Ga2O3 phase and N2 under photoanodic conditions can explain the photo-corrosive effect. It is shown that the product of charge carrier density and mobility, n×μ, scales with the photo-current density in GaN.
[Display omitted]
•Photo-corrosion of InGaN under direct water splitting occurs via formation of Ga-oxide.•Hydrogen evolution is possible on Pt counter-electrode for a small up to 0.1 fraction of In.•Solar energy harvesting by changing the bandgap of InGaN controlled by In concentration.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.solmat.2014.06.033</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-3542-3874</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0927-0248 |
ispartof | Solar energy materials and solar cells, 2014-11, Vol.130, p.36-41 |
issn | 0927-0248 1879-3398 |
language | eng |
recordid | cdi_pascalfrancis_primary_28858412 |
source | Elsevier |
subjects | Alternative fuels. Production and utilization Applied sciences Chemistry Direct energy conversion and energy accumulation Electrical engineering. Electrical power engineering Electrical power engineering Electrochemistry Energy Exact sciences and technology Fuels General and physical chemistry Hydrogen Hydrogen production InGaN solar cells Natural energy Photo-corrosion Photoelectric conversion Photoelectrochemistry. Electrochemiluminescence Photovoltaic conversion Solar cells. Photoelectrochemical cells Solar energy Surface and interface chemistry Water splitting |
title | InxGa1−xN performance as a band-gap-tunable photo-electrode in acidic and basic solutions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T04%3A27%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=InxGa1%E2%88%92xN%20performance%20as%20a%20band-gap-tunable%20photo-electrode%20in%20acidic%20and%20basic%20solutions&rft.jtitle=Solar%20energy%20materials%20and%20solar%20cells&rft.au=Juodkazyt%C4%97,%20Jurga&rft.date=2014-11&rft.volume=130&rft.spage=36&rft.epage=41&rft.pages=36-41&rft.issn=0927-0248&rft.eissn=1879-3398&rft_id=info:doi/10.1016/j.solmat.2014.06.033&rft_dat=%3Celsevier_pasca%3ES0927024814003420%3C/elsevier_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-e155t-f97100a4381f428d2f1a901ac2482f1784be36f8a2eb401e9ec861f9baead31d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |