Loading…
Design and testing of a pair of current leads using bismuth compound superconductor
The thermal behavior of current leads using an oxide superconductor for the low-temperature portion has been studied. Numerical calculations predict a reduction of the necessary coolant flow rate and refrigerator input power. A pair of current leads has been manufactured where the low-temperature po...
Saved in:
Published in: | IEEE transactions on applied superconductivity 1993-03, Vol.3 (1), p.400-403 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The thermal behavior of current leads using an oxide superconductor for the low-temperature portion has been studied. Numerical calculations predict a reduction of the necessary coolant flow rate and refrigerator input power. A pair of current leads has been manufactured where the low-temperature portion consists of six sintered Bi compound cylindrical bars and the high-temperature portion consists of a Cu wire bundle. The lead, cooled by gaseous helium along its entire length, is 0.9 m long and designed to carry 1 kA. The leads have been tested in the same arrangement as practical applications. The helium flow rate necessary to hold thermal equilibrium was about 80% of that for conventional copper leads. The calculation shows that power consumption of the refrigerator needed to cool high-temperature superconductor current leads with an optimum cooling scheme will be about one-third of that for conventional current leads.< > |
---|---|
ISSN: | 1051-8223 1558-2515 |
DOI: | 10.1109/77.233729 |