Loading…

Measurement of acoustic reflection coefficients by an ultrasonic microspectrometer

An ultrasonic microspectrometer (UMSM) was developed in order to evaluate the elastic properties of a solid specimen at a small spot on its surface. In this system, spherical-planar-pair (SPP) lenses were used, by which the acoustic reflection coefficient of a liquid/solid interface was measured as...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 1994-07, Vol.41 (4), p.494-502
Main Authors: Nakaso, N., Ohira, K., Yanaka, M., Tsukahara, Y.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An ultrasonic microspectrometer (UMSM) was developed in order to evaluate the elastic properties of a solid specimen at a small spot on its surface. In this system, spherical-planar-pair (SPP) lenses were used, by which the acoustic reflection coefficient of a liquid/solid interface was measured as a function of the incident angle in the frequency range from 20 to 140 MHz. Using a specimen of fused quartz whose material constants were well known, the measurement accuracy was examined. The phase velocity of a leaky Rayleigh wave was obtained from the phase change of the reflection coefficient with 0.4% accuracy in this frequency range. For a specimen of steel with a large acoustic attenuation, bulk attenuation factors and their frequency dependence were successfully estimated by computer-fitting of the reflection coefficient. As an example of anisotropic materials, the reflection coefficient of X-cut quartz was also measured. Measured phase of the reflection coefficient was in good agreement with numerical calculation.< >
ISSN:0885-3010
1525-8955
DOI:10.1109/58.294110