Loading…

A general scrambling rule for multidimensional FFT algorithms

This work determines the scrambling rule of the multidimensional Cooley-Tukey FFT, and of the multidimensional prime factor FFT, in complete generality, i.e., for signals defined on lattices of general type. The characteristics of the scrambling rule bear interesting similarities with the 1-D case:...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal processing 1994-07, Vol.42 (7), p.1786-1794
Main Authors: Bernardini, R., Cortelazzo, G.M., Mian, G.A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c306t-a16b928cc84fac902615d9a7a91ff148b17e842364a19f303bd2c619a931a34f3
cites cdi_FETCH-LOGICAL-c306t-a16b928cc84fac902615d9a7a91ff148b17e842364a19f303bd2c619a931a34f3
container_end_page 1794
container_issue 7
container_start_page 1786
container_title IEEE transactions on signal processing
container_volume 42
creator Bernardini, R.
Cortelazzo, G.M.
Mian, G.A.
description This work determines the scrambling rule of the multidimensional Cooley-Tukey FFT, and of the multidimensional prime factor FFT, in complete generality, i.e., for signals defined on lattices of general type. The characteristics of the scrambling rule bear interesting similarities with the 1-D case: the scrambling can be performed on the input data and it can be eliminated from the operations requiring pairs of FFT and inverse FFT (e.g. convolutions and correlations). The results of this work allow one to derive the most efficient way of performing multidimensional scrambling. The consequent memory access savings are relevant, especially with arrays of sizable dimensions.< >
doi_str_mv 10.1109/78.298284
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_4169440</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>298284</ieee_id><sourcerecordid>28299553</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-a16b928cc84fac902615d9a7a91ff148b17e842364a19f303bd2c619a931a34f3</originalsourceid><addsrcrecordid>eNo90DFPwzAQBWALgUQpDKxMGRASQ4rPdhx7YEAVBaRKLEViiy6uXYycpNjJwL8nKFWnO-m-e8Mj5BroAoDqh1ItmFZMiRMyAy0gp6KUp-NOC54Xqvw8JxcpfVMKQmg5I49P2c62NmLIkonY1MG3uywOwWaui1kzhN5vfWPb5Lt2RKvVJsOw66Lvv5p0Sc4chmSvDnNOPlbPm-Vrvn5_eVs-rXPDqexzBFlrpoxRwqHRlEkothpL1OAcCFVDaZVgXAoE7Tjl9ZYZCRo1B-TC8Tm5m3L3sfsZbOqrxidjQ8DWdkOqmGJaFwUf4f0ETexSitZV--gbjL8V0Oq_oKpU1VTQaG8PoZgMBhexNT4dHwRILQQd2c3EvLX2eD1k_AEvjmwn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28299553</pqid></control><display><type>article</type><title>A general scrambling rule for multidimensional FFT algorithms</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Bernardini, R. ; Cortelazzo, G.M. ; Mian, G.A.</creator><creatorcontrib>Bernardini, R. ; Cortelazzo, G.M. ; Mian, G.A.</creatorcontrib><description>This work determines the scrambling rule of the multidimensional Cooley-Tukey FFT, and of the multidimensional prime factor FFT, in complete generality, i.e., for signals defined on lattices of general type. The characteristics of the scrambling rule bear interesting similarities with the 1-D case: the scrambling can be performed on the input data and it can be eliminated from the operations requiring pairs of FFT and inverse FFT (e.g. convolutions and correlations). The results of this work allow one to derive the most efficient way of performing multidimensional scrambling. The consequent memory access savings are relevant, especially with arrays of sizable dimensions.&lt; &gt;</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/78.298284</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Array signal processing ; Computational efficiency ; Convolution ; Exact sciences and technology ; Information, signal and communications theory ; Lattices ; Mathematical methods ; Multidimensional signal processing ; Multidimensional systems ; Signal processing ; Signal processing algorithms ; Telecommunications and information theory</subject><ispartof>IEEE transactions on signal processing, 1994-07, Vol.42 (7), p.1786-1794</ispartof><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-a16b928cc84fac902615d9a7a91ff148b17e842364a19f303bd2c619a931a34f3</citedby><cites>FETCH-LOGICAL-c306t-a16b928cc84fac902615d9a7a91ff148b17e842364a19f303bd2c619a931a34f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/298284$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4169440$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bernardini, R.</creatorcontrib><creatorcontrib>Cortelazzo, G.M.</creatorcontrib><creatorcontrib>Mian, G.A.</creatorcontrib><title>A general scrambling rule for multidimensional FFT algorithms</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>This work determines the scrambling rule of the multidimensional Cooley-Tukey FFT, and of the multidimensional prime factor FFT, in complete generality, i.e., for signals defined on lattices of general type. The characteristics of the scrambling rule bear interesting similarities with the 1-D case: the scrambling can be performed on the input data and it can be eliminated from the operations requiring pairs of FFT and inverse FFT (e.g. convolutions and correlations). The results of this work allow one to derive the most efficient way of performing multidimensional scrambling. The consequent memory access savings are relevant, especially with arrays of sizable dimensions.&lt; &gt;</description><subject>Applied sciences</subject><subject>Array signal processing</subject><subject>Computational efficiency</subject><subject>Convolution</subject><subject>Exact sciences and technology</subject><subject>Information, signal and communications theory</subject><subject>Lattices</subject><subject>Mathematical methods</subject><subject>Multidimensional signal processing</subject><subject>Multidimensional systems</subject><subject>Signal processing</subject><subject>Signal processing algorithms</subject><subject>Telecommunications and information theory</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNo90DFPwzAQBWALgUQpDKxMGRASQ4rPdhx7YEAVBaRKLEViiy6uXYycpNjJwL8nKFWnO-m-e8Mj5BroAoDqh1ItmFZMiRMyAy0gp6KUp-NOC54Xqvw8JxcpfVMKQmg5I49P2c62NmLIkonY1MG3uywOwWaui1kzhN5vfWPb5Lt2RKvVJsOw66Lvv5p0Sc4chmSvDnNOPlbPm-Vrvn5_eVs-rXPDqexzBFlrpoxRwqHRlEkothpL1OAcCFVDaZVgXAoE7Tjl9ZYZCRo1B-TC8Tm5m3L3sfsZbOqrxidjQ8DWdkOqmGJaFwUf4f0ETexSitZV--gbjL8V0Oq_oKpU1VTQaG8PoZgMBhexNT4dHwRILQQd2c3EvLX2eD1k_AEvjmwn</recordid><startdate>19940701</startdate><enddate>19940701</enddate><creator>Bernardini, R.</creator><creator>Cortelazzo, G.M.</creator><creator>Mian, G.A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19940701</creationdate><title>A general scrambling rule for multidimensional FFT algorithms</title><author>Bernardini, R. ; Cortelazzo, G.M. ; Mian, G.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-a16b928cc84fac902615d9a7a91ff148b17e842364a19f303bd2c619a931a34f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Applied sciences</topic><topic>Array signal processing</topic><topic>Computational efficiency</topic><topic>Convolution</topic><topic>Exact sciences and technology</topic><topic>Information, signal and communications theory</topic><topic>Lattices</topic><topic>Mathematical methods</topic><topic>Multidimensional signal processing</topic><topic>Multidimensional systems</topic><topic>Signal processing</topic><topic>Signal processing algorithms</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bernardini, R.</creatorcontrib><creatorcontrib>Cortelazzo, G.M.</creatorcontrib><creatorcontrib>Mian, G.A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bernardini, R.</au><au>Cortelazzo, G.M.</au><au>Mian, G.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A general scrambling rule for multidimensional FFT algorithms</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>1994-07-01</date><risdate>1994</risdate><volume>42</volume><issue>7</issue><spage>1786</spage><epage>1794</epage><pages>1786-1794</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>This work determines the scrambling rule of the multidimensional Cooley-Tukey FFT, and of the multidimensional prime factor FFT, in complete generality, i.e., for signals defined on lattices of general type. The characteristics of the scrambling rule bear interesting similarities with the 1-D case: the scrambling can be performed on the input data and it can be eliminated from the operations requiring pairs of FFT and inverse FFT (e.g. convolutions and correlations). The results of this work allow one to derive the most efficient way of performing multidimensional scrambling. The consequent memory access savings are relevant, especially with arrays of sizable dimensions.&lt; &gt;</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/78.298284</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 1994-07, Vol.42 (7), p.1786-1794
issn 1053-587X
1941-0476
language eng
recordid cdi_pascalfrancis_primary_4169440
source IEEE Electronic Library (IEL) Journals
subjects Applied sciences
Array signal processing
Computational efficiency
Convolution
Exact sciences and technology
Information, signal and communications theory
Lattices
Mathematical methods
Multidimensional signal processing
Multidimensional systems
Signal processing
Signal processing algorithms
Telecommunications and information theory
title A general scrambling rule for multidimensional FFT algorithms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A07%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20general%20scrambling%20rule%20for%20multidimensional%20FFT%20algorithms&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Bernardini,%20R.&rft.date=1994-07-01&rft.volume=42&rft.issue=7&rft.spage=1786&rft.epage=1794&rft.pages=1786-1794&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/78.298284&rft_dat=%3Cproquest_pasca%3E28299553%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c306t-a16b928cc84fac902615d9a7a91ff148b17e842364a19f303bd2c619a931a34f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28299553&rft_id=info:pmid/&rft_ieee_id=298284&rfr_iscdi=true