Loading…
A general scrambling rule for multidimensional FFT algorithms
This work determines the scrambling rule of the multidimensional Cooley-Tukey FFT, and of the multidimensional prime factor FFT, in complete generality, i.e., for signals defined on lattices of general type. The characteristics of the scrambling rule bear interesting similarities with the 1-D case:...
Saved in:
Published in: | IEEE transactions on signal processing 1994-07, Vol.42 (7), p.1786-1794 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c306t-a16b928cc84fac902615d9a7a91ff148b17e842364a19f303bd2c619a931a34f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c306t-a16b928cc84fac902615d9a7a91ff148b17e842364a19f303bd2c619a931a34f3 |
container_end_page | 1794 |
container_issue | 7 |
container_start_page | 1786 |
container_title | IEEE transactions on signal processing |
container_volume | 42 |
creator | Bernardini, R. Cortelazzo, G.M. Mian, G.A. |
description | This work determines the scrambling rule of the multidimensional Cooley-Tukey FFT, and of the multidimensional prime factor FFT, in complete generality, i.e., for signals defined on lattices of general type. The characteristics of the scrambling rule bear interesting similarities with the 1-D case: the scrambling can be performed on the input data and it can be eliminated from the operations requiring pairs of FFT and inverse FFT (e.g. convolutions and correlations). The results of this work allow one to derive the most efficient way of performing multidimensional scrambling. The consequent memory access savings are relevant, especially with arrays of sizable dimensions.< > |
doi_str_mv | 10.1109/78.298284 |
format | article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_4169440</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>298284</ieee_id><sourcerecordid>28299553</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-a16b928cc84fac902615d9a7a91ff148b17e842364a19f303bd2c619a931a34f3</originalsourceid><addsrcrecordid>eNo90DFPwzAQBWALgUQpDKxMGRASQ4rPdhx7YEAVBaRKLEViiy6uXYycpNjJwL8nKFWnO-m-e8Mj5BroAoDqh1ItmFZMiRMyAy0gp6KUp-NOC54Xqvw8JxcpfVMKQmg5I49P2c62NmLIkonY1MG3uywOwWaui1kzhN5vfWPb5Lt2RKvVJsOw66Lvv5p0Sc4chmSvDnNOPlbPm-Vrvn5_eVs-rXPDqexzBFlrpoxRwqHRlEkothpL1OAcCFVDaZVgXAoE7Tjl9ZYZCRo1B-TC8Tm5m3L3sfsZbOqrxidjQ8DWdkOqmGJaFwUf4f0ETexSitZV--gbjL8V0Oq_oKpU1VTQaG8PoZgMBhexNT4dHwRILQQd2c3EvLX2eD1k_AEvjmwn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28299553</pqid></control><display><type>article</type><title>A general scrambling rule for multidimensional FFT algorithms</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Bernardini, R. ; Cortelazzo, G.M. ; Mian, G.A.</creator><creatorcontrib>Bernardini, R. ; Cortelazzo, G.M. ; Mian, G.A.</creatorcontrib><description>This work determines the scrambling rule of the multidimensional Cooley-Tukey FFT, and of the multidimensional prime factor FFT, in complete generality, i.e., for signals defined on lattices of general type. The characteristics of the scrambling rule bear interesting similarities with the 1-D case: the scrambling can be performed on the input data and it can be eliminated from the operations requiring pairs of FFT and inverse FFT (e.g. convolutions and correlations). The results of this work allow one to derive the most efficient way of performing multidimensional scrambling. The consequent memory access savings are relevant, especially with arrays of sizable dimensions.< ></description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/78.298284</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Array signal processing ; Computational efficiency ; Convolution ; Exact sciences and technology ; Information, signal and communications theory ; Lattices ; Mathematical methods ; Multidimensional signal processing ; Multidimensional systems ; Signal processing ; Signal processing algorithms ; Telecommunications and information theory</subject><ispartof>IEEE transactions on signal processing, 1994-07, Vol.42 (7), p.1786-1794</ispartof><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-a16b928cc84fac902615d9a7a91ff148b17e842364a19f303bd2c619a931a34f3</citedby><cites>FETCH-LOGICAL-c306t-a16b928cc84fac902615d9a7a91ff148b17e842364a19f303bd2c619a931a34f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/298284$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4169440$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bernardini, R.</creatorcontrib><creatorcontrib>Cortelazzo, G.M.</creatorcontrib><creatorcontrib>Mian, G.A.</creatorcontrib><title>A general scrambling rule for multidimensional FFT algorithms</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>This work determines the scrambling rule of the multidimensional Cooley-Tukey FFT, and of the multidimensional prime factor FFT, in complete generality, i.e., for signals defined on lattices of general type. The characteristics of the scrambling rule bear interesting similarities with the 1-D case: the scrambling can be performed on the input data and it can be eliminated from the operations requiring pairs of FFT and inverse FFT (e.g. convolutions and correlations). The results of this work allow one to derive the most efficient way of performing multidimensional scrambling. The consequent memory access savings are relevant, especially with arrays of sizable dimensions.< ></description><subject>Applied sciences</subject><subject>Array signal processing</subject><subject>Computational efficiency</subject><subject>Convolution</subject><subject>Exact sciences and technology</subject><subject>Information, signal and communications theory</subject><subject>Lattices</subject><subject>Mathematical methods</subject><subject>Multidimensional signal processing</subject><subject>Multidimensional systems</subject><subject>Signal processing</subject><subject>Signal processing algorithms</subject><subject>Telecommunications and information theory</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNo90DFPwzAQBWALgUQpDKxMGRASQ4rPdhx7YEAVBaRKLEViiy6uXYycpNjJwL8nKFWnO-m-e8Mj5BroAoDqh1ItmFZMiRMyAy0gp6KUp-NOC54Xqvw8JxcpfVMKQmg5I49P2c62NmLIkonY1MG3uywOwWaui1kzhN5vfWPb5Lt2RKvVJsOw66Lvv5p0Sc4chmSvDnNOPlbPm-Vrvn5_eVs-rXPDqexzBFlrpoxRwqHRlEkothpL1OAcCFVDaZVgXAoE7Tjl9ZYZCRo1B-TC8Tm5m3L3sfsZbOqrxidjQ8DWdkOqmGJaFwUf4f0ETexSitZV--gbjL8V0Oq_oKpU1VTQaG8PoZgMBhexNT4dHwRILQQd2c3EvLX2eD1k_AEvjmwn</recordid><startdate>19940701</startdate><enddate>19940701</enddate><creator>Bernardini, R.</creator><creator>Cortelazzo, G.M.</creator><creator>Mian, G.A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19940701</creationdate><title>A general scrambling rule for multidimensional FFT algorithms</title><author>Bernardini, R. ; Cortelazzo, G.M. ; Mian, G.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-a16b928cc84fac902615d9a7a91ff148b17e842364a19f303bd2c619a931a34f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Applied sciences</topic><topic>Array signal processing</topic><topic>Computational efficiency</topic><topic>Convolution</topic><topic>Exact sciences and technology</topic><topic>Information, signal and communications theory</topic><topic>Lattices</topic><topic>Mathematical methods</topic><topic>Multidimensional signal processing</topic><topic>Multidimensional systems</topic><topic>Signal processing</topic><topic>Signal processing algorithms</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bernardini, R.</creatorcontrib><creatorcontrib>Cortelazzo, G.M.</creatorcontrib><creatorcontrib>Mian, G.A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bernardini, R.</au><au>Cortelazzo, G.M.</au><au>Mian, G.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A general scrambling rule for multidimensional FFT algorithms</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>1994-07-01</date><risdate>1994</risdate><volume>42</volume><issue>7</issue><spage>1786</spage><epage>1794</epage><pages>1786-1794</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>This work determines the scrambling rule of the multidimensional Cooley-Tukey FFT, and of the multidimensional prime factor FFT, in complete generality, i.e., for signals defined on lattices of general type. The characteristics of the scrambling rule bear interesting similarities with the 1-D case: the scrambling can be performed on the input data and it can be eliminated from the operations requiring pairs of FFT and inverse FFT (e.g. convolutions and correlations). The results of this work allow one to derive the most efficient way of performing multidimensional scrambling. The consequent memory access savings are relevant, especially with arrays of sizable dimensions.< ></abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/78.298284</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 1994-07, Vol.42 (7), p.1786-1794 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_pascalfrancis_primary_4169440 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Applied sciences Array signal processing Computational efficiency Convolution Exact sciences and technology Information, signal and communications theory Lattices Mathematical methods Multidimensional signal processing Multidimensional systems Signal processing Signal processing algorithms Telecommunications and information theory |
title | A general scrambling rule for multidimensional FFT algorithms |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A07%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20general%20scrambling%20rule%20for%20multidimensional%20FFT%20algorithms&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Bernardini,%20R.&rft.date=1994-07-01&rft.volume=42&rft.issue=7&rft.spage=1786&rft.epage=1794&rft.pages=1786-1794&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/78.298284&rft_dat=%3Cproquest_pasca%3E28299553%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c306t-a16b928cc84fac902615d9a7a91ff148b17e842364a19f303bd2c619a931a34f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28299553&rft_id=info:pmid/&rft_ieee_id=298284&rfr_iscdi=true |