Loading…

Order-recursive FIR smoothers

This paper introduces order-recursive FIR smoothers and shows that order-recursive FIR filters are special forms that occur when no future data values are used to estimate the signal. The formulation leads naturally to generalizations of the concepts of prediction-error basis and Cholesky factorizat...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal processing 1994-05, Vol.42 (5), p.1242-1246
Main Authors: Jenq-Tay Yuan, Stuller, J.A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c306t-c6b554702955eba32c3aa9e65062431f83781edef130c376cde76f5039b2160f3
cites cdi_FETCH-LOGICAL-c306t-c6b554702955eba32c3aa9e65062431f83781edef130c376cde76f5039b2160f3
container_end_page 1246
container_issue 5
container_start_page 1242
container_title IEEE transactions on signal processing
container_volume 42
creator Jenq-Tay Yuan
Stuller, J.A.
description This paper introduces order-recursive FIR smoothers and shows that order-recursive FIR filters are special forms that occur when no future data values are used to estimate the signal. The formulation leads naturally to generalizations of the concepts of prediction-error basis and Cholesky factorization which are well known in FIR filter design.< >
doi_str_mv 10.1109/78.295191
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_4186695</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>295191</ieee_id><sourcerecordid>28576455</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-c6b554702955eba32c3aa9e65062431f83781edef130c376cde76f5039b2160f3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKsHr4LQgwgets5svo9SrBYKBVHwFtJ0givbbk22gv_eLVt6moF53mfgZewaYYwI9lGbcWklWjxhA7QCCxBanXY7SF5Ioz_P2UXO3wAohFUDdrtIK0pForBLufql0XT2Nsrrpmm_KOVLdhZ9nenqMIfsY_r8Pnkt5ouX2eRpXgQOqi2CWkopNHSfJS09LwP33pKSoErBMRquDdKKInIIXKuwIq2iBG6XJSqIfMjue-82NT87yq1bVzlQXfsNNbvsSiO1ElJ24EMPhtTknCi6barWPv05BLcvwGnj-gI69u4g9Tn4Oia_CVU-BgQapexeedNjFREdrwfHP3F6X9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28576455</pqid></control><display><type>article</type><title>Order-recursive FIR smoothers</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Jenq-Tay Yuan ; Stuller, J.A.</creator><creatorcontrib>Jenq-Tay Yuan ; Stuller, J.A.</creatorcontrib><description>This paper introduces order-recursive FIR smoothers and shows that order-recursive FIR filters are special forms that occur when no future data values are used to estimate the signal. The formulation leads naturally to generalizations of the concepts of prediction-error basis and Cholesky factorization which are well known in FIR filter design.&lt; &gt;</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/78.295191</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Adaptive filters ; Applied sciences ; Detection, estimation, filtering, equalization, prediction ; Estimation error ; Exact sciences and technology ; Filtering ; Finite impulse response filter ; Information, signal and communications theory ; Kalman filters ; Lattices ; Maximum likelihood detection ; Nonlinear filters ; Parameter estimation ; Signal and communications theory ; Signal processing algorithms ; Signal, noise ; Telecommunications and information theory</subject><ispartof>IEEE transactions on signal processing, 1994-05, Vol.42 (5), p.1242-1246</ispartof><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-c6b554702955eba32c3aa9e65062431f83781edef130c376cde76f5039b2160f3</citedby><cites>FETCH-LOGICAL-c306t-c6b554702955eba32c3aa9e65062431f83781edef130c376cde76f5039b2160f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/295191$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4186695$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jenq-Tay Yuan</creatorcontrib><creatorcontrib>Stuller, J.A.</creatorcontrib><title>Order-recursive FIR smoothers</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>This paper introduces order-recursive FIR smoothers and shows that order-recursive FIR filters are special forms that occur when no future data values are used to estimate the signal. The formulation leads naturally to generalizations of the concepts of prediction-error basis and Cholesky factorization which are well known in FIR filter design.&lt; &gt;</description><subject>Adaptive filters</subject><subject>Applied sciences</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Estimation error</subject><subject>Exact sciences and technology</subject><subject>Filtering</subject><subject>Finite impulse response filter</subject><subject>Information, signal and communications theory</subject><subject>Kalman filters</subject><subject>Lattices</subject><subject>Maximum likelihood detection</subject><subject>Nonlinear filters</subject><subject>Parameter estimation</subject><subject>Signal and communications theory</subject><subject>Signal processing algorithms</subject><subject>Signal, noise</subject><subject>Telecommunications and information theory</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKsHr4LQgwgets5svo9SrBYKBVHwFtJ0givbbk22gv_eLVt6moF53mfgZewaYYwI9lGbcWklWjxhA7QCCxBanXY7SF5Ioz_P2UXO3wAohFUDdrtIK0pForBLufql0XT2Nsrrpmm_KOVLdhZ9nenqMIfsY_r8Pnkt5ouX2eRpXgQOqi2CWkopNHSfJS09LwP33pKSoErBMRquDdKKInIIXKuwIq2iBG6XJSqIfMjue-82NT87yq1bVzlQXfsNNbvsSiO1ElJ24EMPhtTknCi6barWPv05BLcvwGnj-gI69u4g9Tn4Oia_CVU-BgQapexeedNjFREdrwfHP3F6X9w</recordid><startdate>19940501</startdate><enddate>19940501</enddate><creator>Jenq-Tay Yuan</creator><creator>Stuller, J.A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19940501</creationdate><title>Order-recursive FIR smoothers</title><author>Jenq-Tay Yuan ; Stuller, J.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-c6b554702955eba32c3aa9e65062431f83781edef130c376cde76f5039b2160f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Adaptive filters</topic><topic>Applied sciences</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Estimation error</topic><topic>Exact sciences and technology</topic><topic>Filtering</topic><topic>Finite impulse response filter</topic><topic>Information, signal and communications theory</topic><topic>Kalman filters</topic><topic>Lattices</topic><topic>Maximum likelihood detection</topic><topic>Nonlinear filters</topic><topic>Parameter estimation</topic><topic>Signal and communications theory</topic><topic>Signal processing algorithms</topic><topic>Signal, noise</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jenq-Tay Yuan</creatorcontrib><creatorcontrib>Stuller, J.A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jenq-Tay Yuan</au><au>Stuller, J.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Order-recursive FIR smoothers</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>1994-05-01</date><risdate>1994</risdate><volume>42</volume><issue>5</issue><spage>1242</spage><epage>1246</epage><pages>1242-1246</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>This paper introduces order-recursive FIR smoothers and shows that order-recursive FIR filters are special forms that occur when no future data values are used to estimate the signal. The formulation leads naturally to generalizations of the concepts of prediction-error basis and Cholesky factorization which are well known in FIR filter design.&lt; &gt;</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/78.295191</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 1994-05, Vol.42 (5), p.1242-1246
issn 1053-587X
1941-0476
language eng
recordid cdi_pascalfrancis_primary_4186695
source IEEE Electronic Library (IEL) Journals
subjects Adaptive filters
Applied sciences
Detection, estimation, filtering, equalization, prediction
Estimation error
Exact sciences and technology
Filtering
Finite impulse response filter
Information, signal and communications theory
Kalman filters
Lattices
Maximum likelihood detection
Nonlinear filters
Parameter estimation
Signal and communications theory
Signal processing algorithms
Signal, noise
Telecommunications and information theory
title Order-recursive FIR smoothers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T23%3A30%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Order-recursive%20FIR%20smoothers&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Jenq-Tay%20Yuan&rft.date=1994-05-01&rft.volume=42&rft.issue=5&rft.spage=1242&rft.epage=1246&rft.pages=1242-1246&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/78.295191&rft_dat=%3Cproquest_pasca%3E28576455%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c306t-c6b554702955eba32c3aa9e65062431f83781edef130c376cde76f5039b2160f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28576455&rft_id=info:pmid/&rft_ieee_id=295191&rfr_iscdi=true