Loading…
Grid Point Interpolation on Finite Regions Using C1 Box Splines
Multivariate grid point interpolation on finite regions is considered by translates of C1 box splines defined on a (s + 1)-direction mesh in Rs. In general, this problem will give more degrees of freedom than the number of interpolation conditions, and hence the problem has no unique solution. Among...
Saved in:
Published in: | SIAM journal on numerical analysis 1992-08, Vol.29 (4), p.1136-1153 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1153 |
container_issue | 4 |
container_start_page | 1136 |
container_title | SIAM journal on numerical analysis |
container_volume | 29 |
creator | Arge, Erlend Daehlen, Morten |
description | Multivariate grid point interpolation on finite regions is considered by translates of C1 box splines defined on a (s + 1)-direction mesh in Rs. In general, this problem will give more degrees of freedom than the number of interpolation conditions, and hence the problem has no unique solution. Among all interpolants, the one minimizing a smoothing functional is chosen. Two choices of the smoothing functional are proposed, and the related existence and uniqueness problems are studied. Examples showing constructions of box spline surfaces on nonrectangular regions in R2 and rectangular regions in R3 are presented. The method can also be used to construct a smooth interpolant to a set of points given at an almost arbitrary set of grid points in Rs. |
format | article |
fullrecord | <record><control><sourceid>jstor_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_4545792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2157996</jstor_id><sourcerecordid>2157996</sourcerecordid><originalsourceid>FETCH-LOGICAL-j502-f82a9f8f373c78954e2b28e2e631008601ccf46d79677229ad881db9e56506773</originalsourceid><addsrcrecordid>eNo9jEtLAzEAhIMouLb-Aw85eA3k_TiJLrYWCoqt55Jmk5JlzS7JHvTfG6gUBob5Zpgr0BBsBFJE4WvQYMwkIpyaW3BXSo9r1oQ14GmdYwc_xphmuEmzz9M42DmOCVatYoqzh5_-VEGBXyWmE2wJfBl_4G4aYvJlCW6CHYq___cF2K9e9-0b2r6vN-3zFvUCUxQ0tSbowBRzShvBPT1S7amXjGCsJSbOBS47ZaRSlBrbaU26o_FCClwRW4DH8-1ki7NDyDa5WA5Tjt82_x644EIZWmcP51lf5jFfakpqayT7A25VTYw</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Grid Point Interpolation on Finite Regions Using C1 Box Splines</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>ABI/INFORM Global</source><source>SIAM journals archive (Locus)</source><creator>Arge, Erlend ; Daehlen, Morten</creator><creatorcontrib>Arge, Erlend ; Daehlen, Morten</creatorcontrib><description>Multivariate grid point interpolation on finite regions is considered by translates of C1 box splines defined on a (s + 1)-direction mesh in Rs. In general, this problem will give more degrees of freedom than the number of interpolation conditions, and hence the problem has no unique solution. Among all interpolants, the one minimizing a smoothing functional is chosen. Two choices of the smoothing functional are proposed, and the related existence and uniqueness problems are studied. Examples showing constructions of box spline surfaces on nonrectangular regions in R2 and rectangular regions in R3 are presented. The method can also be used to construct a smooth interpolant to a set of points given at an almost arbitrary set of grid points in Rs.</description><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>CODEN: SJNAEQ</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Applied mathematics ; Approximation ; Cubes ; Exact sciences and technology ; Interpolation ; Linear equations ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical approximation ; Polynomials ; Rectangles ; Sciences and techniques of general use ; Tensors ; Uniqueness</subject><ispartof>SIAM journal on numerical analysis, 1992-08, Vol.29 (4), p.1136-1153</ispartof><rights>Copyright 1992 Society for Industrial and Applied Mathematics</rights><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2157996$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2157996$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,58217,58450</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4545792$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Arge, Erlend</creatorcontrib><creatorcontrib>Daehlen, Morten</creatorcontrib><title>Grid Point Interpolation on Finite Regions Using C1 Box Splines</title><title>SIAM journal on numerical analysis</title><description>Multivariate grid point interpolation on finite regions is considered by translates of C1 box splines defined on a (s + 1)-direction mesh in Rs. In general, this problem will give more degrees of freedom than the number of interpolation conditions, and hence the problem has no unique solution. Among all interpolants, the one minimizing a smoothing functional is chosen. Two choices of the smoothing functional are proposed, and the related existence and uniqueness problems are studied. Examples showing constructions of box spline surfaces on nonrectangular regions in R2 and rectangular regions in R3 are presented. The method can also be used to construct a smooth interpolant to a set of points given at an almost arbitrary set of grid points in Rs.</description><subject>Applied mathematics</subject><subject>Approximation</subject><subject>Cubes</subject><subject>Exact sciences and technology</subject><subject>Interpolation</subject><subject>Linear equations</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical approximation</subject><subject>Polynomials</subject><subject>Rectangles</subject><subject>Sciences and techniques of general use</subject><subject>Tensors</subject><subject>Uniqueness</subject><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNo9jEtLAzEAhIMouLb-Aw85eA3k_TiJLrYWCoqt55Jmk5JlzS7JHvTfG6gUBob5Zpgr0BBsBFJE4WvQYMwkIpyaW3BXSo9r1oQ14GmdYwc_xphmuEmzz9M42DmOCVatYoqzh5_-VEGBXyWmE2wJfBl_4G4aYvJlCW6CHYq___cF2K9e9-0b2r6vN-3zFvUCUxQ0tSbowBRzShvBPT1S7amXjGCsJSbOBS47ZaRSlBrbaU26o_FCClwRW4DH8-1ki7NDyDa5WA5Tjt82_x644EIZWmcP51lf5jFfakpqayT7A25VTYw</recordid><startdate>19920801</startdate><enddate>19920801</enddate><creator>Arge, Erlend</creator><creator>Daehlen, Morten</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope></search><sort><creationdate>19920801</creationdate><title>Grid Point Interpolation on Finite Regions Using C1 Box Splines</title><author>Arge, Erlend ; Daehlen, Morten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j502-f82a9f8f373c78954e2b28e2e631008601ccf46d79677229ad881db9e56506773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Applied mathematics</topic><topic>Approximation</topic><topic>Cubes</topic><topic>Exact sciences and technology</topic><topic>Interpolation</topic><topic>Linear equations</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical approximation</topic><topic>Polynomials</topic><topic>Rectangles</topic><topic>Sciences and techniques of general use</topic><topic>Tensors</topic><topic>Uniqueness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arge, Erlend</creatorcontrib><creatorcontrib>Daehlen, Morten</creatorcontrib><collection>Pascal-Francis</collection><jtitle>SIAM journal on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arge, Erlend</au><au>Daehlen, Morten</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Grid Point Interpolation on Finite Regions Using C1 Box Splines</atitle><jtitle>SIAM journal on numerical analysis</jtitle><date>1992-08-01</date><risdate>1992</risdate><volume>29</volume><issue>4</issue><spage>1136</spage><epage>1153</epage><pages>1136-1153</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><coden>SJNAEQ</coden><abstract>Multivariate grid point interpolation on finite regions is considered by translates of C1 box splines defined on a (s + 1)-direction mesh in Rs. In general, this problem will give more degrees of freedom than the number of interpolation conditions, and hence the problem has no unique solution. Among all interpolants, the one minimizing a smoothing functional is chosen. Two choices of the smoothing functional are proposed, and the related existence and uniqueness problems are studied. Examples showing constructions of box spline surfaces on nonrectangular regions in R2 and rectangular regions in R3 are presented. The method can also be used to construct a smooth interpolant to a set of points given at an almost arbitrary set of grid points in Rs.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1429 |
ispartof | SIAM journal on numerical analysis, 1992-08, Vol.29 (4), p.1136-1153 |
issn | 0036-1429 1095-7170 |
language | eng |
recordid | cdi_pascalfrancis_primary_4545792 |
source | JSTOR Archival Journals and Primary Sources Collection; ABI/INFORM Global; SIAM journals archive (Locus) |
subjects | Applied mathematics Approximation Cubes Exact sciences and technology Interpolation Linear equations Mathematics Numerical analysis Numerical analysis. Scientific computation Numerical approximation Polynomials Rectangles Sciences and techniques of general use Tensors Uniqueness |
title | Grid Point Interpolation on Finite Regions Using C1 Box Splines |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T14%3A23%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Grid%20Point%20Interpolation%20on%20Finite%20Regions%20Using%20C1%20Box%20Splines&rft.jtitle=SIAM%20journal%20on%20numerical%20analysis&rft.au=Arge,%20Erlend&rft.date=1992-08-01&rft.volume=29&rft.issue=4&rft.spage=1136&rft.epage=1153&rft.pages=1136-1153&rft.issn=0036-1429&rft.eissn=1095-7170&rft.coden=SJNAEQ&rft_id=info:doi/&rft_dat=%3Cjstor_pasca%3E2157996%3C/jstor_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-j502-f82a9f8f373c78954e2b28e2e631008601ccf46d79677229ad881db9e56506773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=2157996&rfr_iscdi=true |