Loading…

Grid Point Interpolation on Finite Regions Using C1 Box Splines

Multivariate grid point interpolation on finite regions is considered by translates of C1 box splines defined on a (s + 1)-direction mesh in Rs. In general, this problem will give more degrees of freedom than the number of interpolation conditions, and hence the problem has no unique solution. Among...

Full description

Saved in:
Bibliographic Details
Published in:SIAM journal on numerical analysis 1992-08, Vol.29 (4), p.1136-1153
Main Authors: Arge, Erlend, Daehlen, Morten
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1153
container_issue 4
container_start_page 1136
container_title SIAM journal on numerical analysis
container_volume 29
creator Arge, Erlend
Daehlen, Morten
description Multivariate grid point interpolation on finite regions is considered by translates of C1 box splines defined on a (s + 1)-direction mesh in Rs. In general, this problem will give more degrees of freedom than the number of interpolation conditions, and hence the problem has no unique solution. Among all interpolants, the one minimizing a smoothing functional is chosen. Two choices of the smoothing functional are proposed, and the related existence and uniqueness problems are studied. Examples showing constructions of box spline surfaces on nonrectangular regions in R2 and rectangular regions in R3 are presented. The method can also be used to construct a smooth interpolant to a set of points given at an almost arbitrary set of grid points in Rs.
format article
fullrecord <record><control><sourceid>jstor_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_4545792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2157996</jstor_id><sourcerecordid>2157996</sourcerecordid><originalsourceid>FETCH-LOGICAL-j502-f82a9f8f373c78954e2b28e2e631008601ccf46d79677229ad881db9e56506773</originalsourceid><addsrcrecordid>eNo9jEtLAzEAhIMouLb-Aw85eA3k_TiJLrYWCoqt55Jmk5JlzS7JHvTfG6gUBob5Zpgr0BBsBFJE4WvQYMwkIpyaW3BXSo9r1oQ14GmdYwc_xphmuEmzz9M42DmOCVatYoqzh5_-VEGBXyWmE2wJfBl_4G4aYvJlCW6CHYq___cF2K9e9-0b2r6vN-3zFvUCUxQ0tSbowBRzShvBPT1S7amXjGCsJSbOBS47ZaRSlBrbaU26o_FCClwRW4DH8-1ki7NDyDa5WA5Tjt82_x644EIZWmcP51lf5jFfakpqayT7A25VTYw</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Grid Point Interpolation on Finite Regions Using C1 Box Splines</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>ABI/INFORM Global</source><source>SIAM journals archive (Locus)</source><creator>Arge, Erlend ; Daehlen, Morten</creator><creatorcontrib>Arge, Erlend ; Daehlen, Morten</creatorcontrib><description>Multivariate grid point interpolation on finite regions is considered by translates of C1 box splines defined on a (s + 1)-direction mesh in Rs. In general, this problem will give more degrees of freedom than the number of interpolation conditions, and hence the problem has no unique solution. Among all interpolants, the one minimizing a smoothing functional is chosen. Two choices of the smoothing functional are proposed, and the related existence and uniqueness problems are studied. Examples showing constructions of box spline surfaces on nonrectangular regions in R2 and rectangular regions in R3 are presented. The method can also be used to construct a smooth interpolant to a set of points given at an almost arbitrary set of grid points in Rs.</description><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>CODEN: SJNAEQ</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Applied mathematics ; Approximation ; Cubes ; Exact sciences and technology ; Interpolation ; Linear equations ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical approximation ; Polynomials ; Rectangles ; Sciences and techniques of general use ; Tensors ; Uniqueness</subject><ispartof>SIAM journal on numerical analysis, 1992-08, Vol.29 (4), p.1136-1153</ispartof><rights>Copyright 1992 Society for Industrial and Applied Mathematics</rights><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2157996$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2157996$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,58217,58450</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4545792$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Arge, Erlend</creatorcontrib><creatorcontrib>Daehlen, Morten</creatorcontrib><title>Grid Point Interpolation on Finite Regions Using C1 Box Splines</title><title>SIAM journal on numerical analysis</title><description>Multivariate grid point interpolation on finite regions is considered by translates of C1 box splines defined on a (s + 1)-direction mesh in Rs. In general, this problem will give more degrees of freedom than the number of interpolation conditions, and hence the problem has no unique solution. Among all interpolants, the one minimizing a smoothing functional is chosen. Two choices of the smoothing functional are proposed, and the related existence and uniqueness problems are studied. Examples showing constructions of box spline surfaces on nonrectangular regions in R2 and rectangular regions in R3 are presented. The method can also be used to construct a smooth interpolant to a set of points given at an almost arbitrary set of grid points in Rs.</description><subject>Applied mathematics</subject><subject>Approximation</subject><subject>Cubes</subject><subject>Exact sciences and technology</subject><subject>Interpolation</subject><subject>Linear equations</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical approximation</subject><subject>Polynomials</subject><subject>Rectangles</subject><subject>Sciences and techniques of general use</subject><subject>Tensors</subject><subject>Uniqueness</subject><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNo9jEtLAzEAhIMouLb-Aw85eA3k_TiJLrYWCoqt55Jmk5JlzS7JHvTfG6gUBob5Zpgr0BBsBFJE4WvQYMwkIpyaW3BXSo9r1oQ14GmdYwc_xphmuEmzz9M42DmOCVatYoqzh5_-VEGBXyWmE2wJfBl_4G4aYvJlCW6CHYq___cF2K9e9-0b2r6vN-3zFvUCUxQ0tSbowBRzShvBPT1S7amXjGCsJSbOBS47ZaRSlBrbaU26o_FCClwRW4DH8-1ki7NDyDa5WA5Tjt82_x644EIZWmcP51lf5jFfakpqayT7A25VTYw</recordid><startdate>19920801</startdate><enddate>19920801</enddate><creator>Arge, Erlend</creator><creator>Daehlen, Morten</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope></search><sort><creationdate>19920801</creationdate><title>Grid Point Interpolation on Finite Regions Using C1 Box Splines</title><author>Arge, Erlend ; Daehlen, Morten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j502-f82a9f8f373c78954e2b28e2e631008601ccf46d79677229ad881db9e56506773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Applied mathematics</topic><topic>Approximation</topic><topic>Cubes</topic><topic>Exact sciences and technology</topic><topic>Interpolation</topic><topic>Linear equations</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical approximation</topic><topic>Polynomials</topic><topic>Rectangles</topic><topic>Sciences and techniques of general use</topic><topic>Tensors</topic><topic>Uniqueness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arge, Erlend</creatorcontrib><creatorcontrib>Daehlen, Morten</creatorcontrib><collection>Pascal-Francis</collection><jtitle>SIAM journal on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arge, Erlend</au><au>Daehlen, Morten</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Grid Point Interpolation on Finite Regions Using C1 Box Splines</atitle><jtitle>SIAM journal on numerical analysis</jtitle><date>1992-08-01</date><risdate>1992</risdate><volume>29</volume><issue>4</issue><spage>1136</spage><epage>1153</epage><pages>1136-1153</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><coden>SJNAEQ</coden><abstract>Multivariate grid point interpolation on finite regions is considered by translates of C1 box splines defined on a (s + 1)-direction mesh in Rs. In general, this problem will give more degrees of freedom than the number of interpolation conditions, and hence the problem has no unique solution. Among all interpolants, the one minimizing a smoothing functional is chosen. Two choices of the smoothing functional are proposed, and the related existence and uniqueness problems are studied. Examples showing constructions of box spline surfaces on nonrectangular regions in R2 and rectangular regions in R3 are presented. The method can also be used to construct a smooth interpolant to a set of points given at an almost arbitrary set of grid points in Rs.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-1429
ispartof SIAM journal on numerical analysis, 1992-08, Vol.29 (4), p.1136-1153
issn 0036-1429
1095-7170
language eng
recordid cdi_pascalfrancis_primary_4545792
source JSTOR Archival Journals and Primary Sources Collection; ABI/INFORM Global; SIAM journals archive (Locus)
subjects Applied mathematics
Approximation
Cubes
Exact sciences and technology
Interpolation
Linear equations
Mathematics
Numerical analysis
Numerical analysis. Scientific computation
Numerical approximation
Polynomials
Rectangles
Sciences and techniques of general use
Tensors
Uniqueness
title Grid Point Interpolation on Finite Regions Using C1 Box Splines
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T14%3A23%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Grid%20Point%20Interpolation%20on%20Finite%20Regions%20Using%20C1%20Box%20Splines&rft.jtitle=SIAM%20journal%20on%20numerical%20analysis&rft.au=Arge,%20Erlend&rft.date=1992-08-01&rft.volume=29&rft.issue=4&rft.spage=1136&rft.epage=1153&rft.pages=1136-1153&rft.issn=0036-1429&rft.eissn=1095-7170&rft.coden=SJNAEQ&rft_id=info:doi/&rft_dat=%3Cjstor_pasca%3E2157996%3C/jstor_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-j502-f82a9f8f373c78954e2b28e2e631008601ccf46d79677229ad881db9e56506773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=2157996&rfr_iscdi=true