Loading…
Detailed comparison of two approximate methods for the solution of the scalar wave equation for a rectangular optical waveguide
Two approximate methods for the determination of the fundamental mode of an optical waveguide with rectangular core cross section and step refractive-index profiles are presented and analyzed thoroughly. Both methods are based on Galerkin's method. The first method uses Hermite-Gauss basis func...
Saved in:
Published in: | Journal of lightwave technology 1993-03, Vol.11 (3), p.429-433 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3226-91f9230c52dd33666fa2e1d3802df55024c4aa8c4b72f1f41f259bff536215a13 |
---|---|
cites | cdi_FETCH-LOGICAL-c3226-91f9230c52dd33666fa2e1d3802df55024c4aa8c4b72f1f41f259bff536215a13 |
container_end_page | 433 |
container_issue | 3 |
container_start_page | 429 |
container_title | Journal of lightwave technology |
container_volume | 11 |
creator | Rasmussen, T. Povlsen, J.H. Bjarklev, A. Lumholt, O. Pedersen, B. Rottwitt, K. |
description | Two approximate methods for the determination of the fundamental mode of an optical waveguide with rectangular core cross section and step refractive-index profiles are presented and analyzed thoroughly. Both methods are based on Galerkin's method. The first method uses Hermite-Gauss basis functions and the second uses the guided and nonguided slab waveguide solutions as basis functions. The results are compared with results from an accurate circular harmonic analysis. Both methods provide values of the normalized propagation constant with errors less than 0.1% for practical rectangular single-mode waveguides. The slab waveguide method is the fastest, and even when only one slab waveguide mode is used the propagation constant for the fundamental mode can be calculated with an error of less than 1%. The slab waveguide method also gives very accurate results for the propagation constant for higher order modes.< > |
doi_str_mv | 10.1109/50.219576 |
format | article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_4848528</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>219576</ieee_id><sourcerecordid>28269869</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3226-91f9230c52dd33666fa2e1d3802df55024c4aa8c4b72f1f41f259bff536215a13</originalsourceid><addsrcrecordid>eNo90EFP3DAQBWCraqVuFw5cOflQVeohYI_txDlWUKASUi_tOZp1xmCUXQfbKXDqXydhV5ws630z0jzGTqQ4k1K050acgWxNU39gK2mMrQCk-shWolGqsg3oz-xLzg9CSK1ts2L_L6lgGKjnLm5HTCHHHY-el6fIcRxTfA5bLMS3VO5jn7mPiZd74jkOUwkHu_wdDpj4E_4jTo8TvmULRp7IFdzdTUsexxJm-ebuptDTEfvkcch0fHjX7O_Vzz8XN9Xt7-tfFz9uK6cA6qqVvgUlnIG-V6qua49AsldWQO-NEaCdRrRObxrw0mvpwbQb742qQRqUas2-7ffOJz1OlEu3DdnRMOCO4pQ7sFC3tm5n-H0PXYo5J_LdmOYK0ksnRbdU3BnR7Sue7dfDUlzu9wl3LuT3AW21NWBndrpngYje08OOV_nehOs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28269869</pqid></control><display><type>article</type><title>Detailed comparison of two approximate methods for the solution of the scalar wave equation for a rectangular optical waveguide</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Rasmussen, T. ; Povlsen, J.H. ; Bjarklev, A. ; Lumholt, O. ; Pedersen, B. ; Rottwitt, K.</creator><creatorcontrib>Rasmussen, T. ; Povlsen, J.H. ; Bjarklev, A. ; Lumholt, O. ; Pedersen, B. ; Rottwitt, K.</creatorcontrib><description>Two approximate methods for the determination of the fundamental mode of an optical waveguide with rectangular core cross section and step refractive-index profiles are presented and analyzed thoroughly. Both methods are based on Galerkin's method. The first method uses Hermite-Gauss basis functions and the second uses the guided and nonguided slab waveguide solutions as basis functions. The results are compared with results from an accurate circular harmonic analysis. Both methods provide values of the normalized propagation constant with errors less than 0.1% for practical rectangular single-mode waveguides. The slab waveguide method is the fastest, and even when only one slab waveguide mode is used the propagation constant for the fundamental mode can be calculated with an error of less than 1%. The slab waveguide method also gives very accurate results for the propagation constant for higher order modes.< ></description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/50.219576</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Circuit properties ; Electric, optical and optoelectronic circuits ; Electronics ; Exact sciences and technology ; Harmonic analysis ; Integrated optics. Optical fibers and wave guides ; Moment methods ; Optical and optoelectronic circuits ; Optical refraction ; Optical waveguides ; Partial differential equations ; Propagation constant ; Rectangular waveguides ; Slabs</subject><ispartof>Journal of lightwave technology, 1993-03, Vol.11 (3), p.429-433</ispartof><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3226-91f9230c52dd33666fa2e1d3802df55024c4aa8c4b72f1f41f259bff536215a13</citedby><cites>FETCH-LOGICAL-c3226-91f9230c52dd33666fa2e1d3802df55024c4aa8c4b72f1f41f259bff536215a13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/219576$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4848528$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Rasmussen, T.</creatorcontrib><creatorcontrib>Povlsen, J.H.</creatorcontrib><creatorcontrib>Bjarklev, A.</creatorcontrib><creatorcontrib>Lumholt, O.</creatorcontrib><creatorcontrib>Pedersen, B.</creatorcontrib><creatorcontrib>Rottwitt, K.</creatorcontrib><title>Detailed comparison of two approximate methods for the solution of the scalar wave equation for a rectangular optical waveguide</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>Two approximate methods for the determination of the fundamental mode of an optical waveguide with rectangular core cross section and step refractive-index profiles are presented and analyzed thoroughly. Both methods are based on Galerkin's method. The first method uses Hermite-Gauss basis functions and the second uses the guided and nonguided slab waveguide solutions as basis functions. The results are compared with results from an accurate circular harmonic analysis. Both methods provide values of the normalized propagation constant with errors less than 0.1% for practical rectangular single-mode waveguides. The slab waveguide method is the fastest, and even when only one slab waveguide mode is used the propagation constant for the fundamental mode can be calculated with an error of less than 1%. The slab waveguide method also gives very accurate results for the propagation constant for higher order modes.< ></description><subject>Applied sciences</subject><subject>Circuit properties</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Harmonic analysis</subject><subject>Integrated optics. Optical fibers and wave guides</subject><subject>Moment methods</subject><subject>Optical and optoelectronic circuits</subject><subject>Optical refraction</subject><subject>Optical waveguides</subject><subject>Partial differential equations</subject><subject>Propagation constant</subject><subject>Rectangular waveguides</subject><subject>Slabs</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNo90EFP3DAQBWCraqVuFw5cOflQVeohYI_txDlWUKASUi_tOZp1xmCUXQfbKXDqXydhV5ws630z0jzGTqQ4k1K050acgWxNU39gK2mMrQCk-shWolGqsg3oz-xLzg9CSK1ts2L_L6lgGKjnLm5HTCHHHY-el6fIcRxTfA5bLMS3VO5jn7mPiZd74jkOUwkHu_wdDpj4E_4jTo8TvmULRp7IFdzdTUsexxJm-ebuptDTEfvkcch0fHjX7O_Vzz8XN9Xt7-tfFz9uK6cA6qqVvgUlnIG-V6qua49AsldWQO-NEaCdRrRObxrw0mvpwbQb742qQRqUas2-7ffOJz1OlEu3DdnRMOCO4pQ7sFC3tm5n-H0PXYo5J_LdmOYK0ksnRbdU3BnR7Sue7dfDUlzu9wl3LuT3AW21NWBndrpngYje08OOV_nehOs</recordid><startdate>19930301</startdate><enddate>19930301</enddate><creator>Rasmussen, T.</creator><creator>Povlsen, J.H.</creator><creator>Bjarklev, A.</creator><creator>Lumholt, O.</creator><creator>Pedersen, B.</creator><creator>Rottwitt, K.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>19930301</creationdate><title>Detailed comparison of two approximate methods for the solution of the scalar wave equation for a rectangular optical waveguide</title><author>Rasmussen, T. ; Povlsen, J.H. ; Bjarklev, A. ; Lumholt, O. ; Pedersen, B. ; Rottwitt, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3226-91f9230c52dd33666fa2e1d3802df55024c4aa8c4b72f1f41f259bff536215a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Applied sciences</topic><topic>Circuit properties</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Harmonic analysis</topic><topic>Integrated optics. Optical fibers and wave guides</topic><topic>Moment methods</topic><topic>Optical and optoelectronic circuits</topic><topic>Optical refraction</topic><topic>Optical waveguides</topic><topic>Partial differential equations</topic><topic>Propagation constant</topic><topic>Rectangular waveguides</topic><topic>Slabs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rasmussen, T.</creatorcontrib><creatorcontrib>Povlsen, J.H.</creatorcontrib><creatorcontrib>Bjarklev, A.</creatorcontrib><creatorcontrib>Lumholt, O.</creatorcontrib><creatorcontrib>Pedersen, B.</creatorcontrib><creatorcontrib>Rottwitt, K.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rasmussen, T.</au><au>Povlsen, J.H.</au><au>Bjarklev, A.</au><au>Lumholt, O.</au><au>Pedersen, B.</au><au>Rottwitt, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detailed comparison of two approximate methods for the solution of the scalar wave equation for a rectangular optical waveguide</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>1993-03-01</date><risdate>1993</risdate><volume>11</volume><issue>3</issue><spage>429</spage><epage>433</epage><pages>429-433</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>Two approximate methods for the determination of the fundamental mode of an optical waveguide with rectangular core cross section and step refractive-index profiles are presented and analyzed thoroughly. Both methods are based on Galerkin's method. The first method uses Hermite-Gauss basis functions and the second uses the guided and nonguided slab waveguide solutions as basis functions. The results are compared with results from an accurate circular harmonic analysis. Both methods provide values of the normalized propagation constant with errors less than 0.1% for practical rectangular single-mode waveguides. The slab waveguide method is the fastest, and even when only one slab waveguide mode is used the propagation constant for the fundamental mode can be calculated with an error of less than 1%. The slab waveguide method also gives very accurate results for the propagation constant for higher order modes.< ></abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/50.219576</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0733-8724 |
ispartof | Journal of lightwave technology, 1993-03, Vol.11 (3), p.429-433 |
issn | 0733-8724 1558-2213 |
language | eng |
recordid | cdi_pascalfrancis_primary_4848528 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Applied sciences Circuit properties Electric, optical and optoelectronic circuits Electronics Exact sciences and technology Harmonic analysis Integrated optics. Optical fibers and wave guides Moment methods Optical and optoelectronic circuits Optical refraction Optical waveguides Partial differential equations Propagation constant Rectangular waveguides Slabs |
title | Detailed comparison of two approximate methods for the solution of the scalar wave equation for a rectangular optical waveguide |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T17%3A39%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detailed%20comparison%20of%20two%20approximate%20methods%20for%20the%20solution%20of%20the%20scalar%20wave%20equation%20for%20a%20rectangular%20optical%20waveguide&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Rasmussen,%20T.&rft.date=1993-03-01&rft.volume=11&rft.issue=3&rft.spage=429&rft.epage=433&rft.pages=429-433&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/50.219576&rft_dat=%3Cproquest_pasca%3E28269869%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3226-91f9230c52dd33666fa2e1d3802df55024c4aa8c4b72f1f41f259bff536215a13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28269869&rft_id=info:pmid/&rft_ieee_id=219576&rfr_iscdi=true |