Loading…

Detailed comparison of two approximate methods for the solution of the scalar wave equation for a rectangular optical waveguide

Two approximate methods for the determination of the fundamental mode of an optical waveguide with rectangular core cross section and step refractive-index profiles are presented and analyzed thoroughly. Both methods are based on Galerkin's method. The first method uses Hermite-Gauss basis func...

Full description

Saved in:
Bibliographic Details
Published in:Journal of lightwave technology 1993-03, Vol.11 (3), p.429-433
Main Authors: Rasmussen, T., Povlsen, J.H., Bjarklev, A., Lumholt, O., Pedersen, B., Rottwitt, K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3226-91f9230c52dd33666fa2e1d3802df55024c4aa8c4b72f1f41f259bff536215a13
cites cdi_FETCH-LOGICAL-c3226-91f9230c52dd33666fa2e1d3802df55024c4aa8c4b72f1f41f259bff536215a13
container_end_page 433
container_issue 3
container_start_page 429
container_title Journal of lightwave technology
container_volume 11
creator Rasmussen, T.
Povlsen, J.H.
Bjarklev, A.
Lumholt, O.
Pedersen, B.
Rottwitt, K.
description Two approximate methods for the determination of the fundamental mode of an optical waveguide with rectangular core cross section and step refractive-index profiles are presented and analyzed thoroughly. Both methods are based on Galerkin's method. The first method uses Hermite-Gauss basis functions and the second uses the guided and nonguided slab waveguide solutions as basis functions. The results are compared with results from an accurate circular harmonic analysis. Both methods provide values of the normalized propagation constant with errors less than 0.1% for practical rectangular single-mode waveguides. The slab waveguide method is the fastest, and even when only one slab waveguide mode is used the propagation constant for the fundamental mode can be calculated with an error of less than 1%. The slab waveguide method also gives very accurate results for the propagation constant for higher order modes.< >
doi_str_mv 10.1109/50.219576
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_4848528</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>219576</ieee_id><sourcerecordid>28269869</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3226-91f9230c52dd33666fa2e1d3802df55024c4aa8c4b72f1f41f259bff536215a13</originalsourceid><addsrcrecordid>eNo90EFP3DAQBWCraqVuFw5cOflQVeohYI_txDlWUKASUi_tOZp1xmCUXQfbKXDqXydhV5ws630z0jzGTqQ4k1K050acgWxNU39gK2mMrQCk-shWolGqsg3oz-xLzg9CSK1ts2L_L6lgGKjnLm5HTCHHHY-el6fIcRxTfA5bLMS3VO5jn7mPiZd74jkOUwkHu_wdDpj4E_4jTo8TvmULRp7IFdzdTUsexxJm-ebuptDTEfvkcch0fHjX7O_Vzz8XN9Xt7-tfFz9uK6cA6qqVvgUlnIG-V6qua49AsldWQO-NEaCdRrRObxrw0mvpwbQb742qQRqUas2-7ffOJz1OlEu3DdnRMOCO4pQ7sFC3tm5n-H0PXYo5J_LdmOYK0ksnRbdU3BnR7Sue7dfDUlzu9wl3LuT3AW21NWBndrpngYje08OOV_nehOs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28269869</pqid></control><display><type>article</type><title>Detailed comparison of two approximate methods for the solution of the scalar wave equation for a rectangular optical waveguide</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Rasmussen, T. ; Povlsen, J.H. ; Bjarklev, A. ; Lumholt, O. ; Pedersen, B. ; Rottwitt, K.</creator><creatorcontrib>Rasmussen, T. ; Povlsen, J.H. ; Bjarklev, A. ; Lumholt, O. ; Pedersen, B. ; Rottwitt, K.</creatorcontrib><description>Two approximate methods for the determination of the fundamental mode of an optical waveguide with rectangular core cross section and step refractive-index profiles are presented and analyzed thoroughly. Both methods are based on Galerkin's method. The first method uses Hermite-Gauss basis functions and the second uses the guided and nonguided slab waveguide solutions as basis functions. The results are compared with results from an accurate circular harmonic analysis. Both methods provide values of the normalized propagation constant with errors less than 0.1% for practical rectangular single-mode waveguides. The slab waveguide method is the fastest, and even when only one slab waveguide mode is used the propagation constant for the fundamental mode can be calculated with an error of less than 1%. The slab waveguide method also gives very accurate results for the propagation constant for higher order modes.&lt; &gt;</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/50.219576</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Circuit properties ; Electric, optical and optoelectronic circuits ; Electronics ; Exact sciences and technology ; Harmonic analysis ; Integrated optics. Optical fibers and wave guides ; Moment methods ; Optical and optoelectronic circuits ; Optical refraction ; Optical waveguides ; Partial differential equations ; Propagation constant ; Rectangular waveguides ; Slabs</subject><ispartof>Journal of lightwave technology, 1993-03, Vol.11 (3), p.429-433</ispartof><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3226-91f9230c52dd33666fa2e1d3802df55024c4aa8c4b72f1f41f259bff536215a13</citedby><cites>FETCH-LOGICAL-c3226-91f9230c52dd33666fa2e1d3802df55024c4aa8c4b72f1f41f259bff536215a13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/219576$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4848528$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Rasmussen, T.</creatorcontrib><creatorcontrib>Povlsen, J.H.</creatorcontrib><creatorcontrib>Bjarklev, A.</creatorcontrib><creatorcontrib>Lumholt, O.</creatorcontrib><creatorcontrib>Pedersen, B.</creatorcontrib><creatorcontrib>Rottwitt, K.</creatorcontrib><title>Detailed comparison of two approximate methods for the solution of the scalar wave equation for a rectangular optical waveguide</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>Two approximate methods for the determination of the fundamental mode of an optical waveguide with rectangular core cross section and step refractive-index profiles are presented and analyzed thoroughly. Both methods are based on Galerkin's method. The first method uses Hermite-Gauss basis functions and the second uses the guided and nonguided slab waveguide solutions as basis functions. The results are compared with results from an accurate circular harmonic analysis. Both methods provide values of the normalized propagation constant with errors less than 0.1% for practical rectangular single-mode waveguides. The slab waveguide method is the fastest, and even when only one slab waveguide mode is used the propagation constant for the fundamental mode can be calculated with an error of less than 1%. The slab waveguide method also gives very accurate results for the propagation constant for higher order modes.&lt; &gt;</description><subject>Applied sciences</subject><subject>Circuit properties</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Harmonic analysis</subject><subject>Integrated optics. Optical fibers and wave guides</subject><subject>Moment methods</subject><subject>Optical and optoelectronic circuits</subject><subject>Optical refraction</subject><subject>Optical waveguides</subject><subject>Partial differential equations</subject><subject>Propagation constant</subject><subject>Rectangular waveguides</subject><subject>Slabs</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNo90EFP3DAQBWCraqVuFw5cOflQVeohYI_txDlWUKASUi_tOZp1xmCUXQfbKXDqXydhV5ws630z0jzGTqQ4k1K050acgWxNU39gK2mMrQCk-shWolGqsg3oz-xLzg9CSK1ts2L_L6lgGKjnLm5HTCHHHY-el6fIcRxTfA5bLMS3VO5jn7mPiZd74jkOUwkHu_wdDpj4E_4jTo8TvmULRp7IFdzdTUsexxJm-ebuptDTEfvkcch0fHjX7O_Vzz8XN9Xt7-tfFz9uK6cA6qqVvgUlnIG-V6qua49AsldWQO-NEaCdRrRObxrw0mvpwbQb742qQRqUas2-7ffOJz1OlEu3DdnRMOCO4pQ7sFC3tm5n-H0PXYo5J_LdmOYK0ksnRbdU3BnR7Sue7dfDUlzu9wl3LuT3AW21NWBndrpngYje08OOV_nehOs</recordid><startdate>19930301</startdate><enddate>19930301</enddate><creator>Rasmussen, T.</creator><creator>Povlsen, J.H.</creator><creator>Bjarklev, A.</creator><creator>Lumholt, O.</creator><creator>Pedersen, B.</creator><creator>Rottwitt, K.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>19930301</creationdate><title>Detailed comparison of two approximate methods for the solution of the scalar wave equation for a rectangular optical waveguide</title><author>Rasmussen, T. ; Povlsen, J.H. ; Bjarklev, A. ; Lumholt, O. ; Pedersen, B. ; Rottwitt, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3226-91f9230c52dd33666fa2e1d3802df55024c4aa8c4b72f1f41f259bff536215a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Applied sciences</topic><topic>Circuit properties</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Harmonic analysis</topic><topic>Integrated optics. Optical fibers and wave guides</topic><topic>Moment methods</topic><topic>Optical and optoelectronic circuits</topic><topic>Optical refraction</topic><topic>Optical waveguides</topic><topic>Partial differential equations</topic><topic>Propagation constant</topic><topic>Rectangular waveguides</topic><topic>Slabs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rasmussen, T.</creatorcontrib><creatorcontrib>Povlsen, J.H.</creatorcontrib><creatorcontrib>Bjarklev, A.</creatorcontrib><creatorcontrib>Lumholt, O.</creatorcontrib><creatorcontrib>Pedersen, B.</creatorcontrib><creatorcontrib>Rottwitt, K.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rasmussen, T.</au><au>Povlsen, J.H.</au><au>Bjarklev, A.</au><au>Lumholt, O.</au><au>Pedersen, B.</au><au>Rottwitt, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detailed comparison of two approximate methods for the solution of the scalar wave equation for a rectangular optical waveguide</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>1993-03-01</date><risdate>1993</risdate><volume>11</volume><issue>3</issue><spage>429</spage><epage>433</epage><pages>429-433</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>Two approximate methods for the determination of the fundamental mode of an optical waveguide with rectangular core cross section and step refractive-index profiles are presented and analyzed thoroughly. Both methods are based on Galerkin's method. The first method uses Hermite-Gauss basis functions and the second uses the guided and nonguided slab waveguide solutions as basis functions. The results are compared with results from an accurate circular harmonic analysis. Both methods provide values of the normalized propagation constant with errors less than 0.1% for practical rectangular single-mode waveguides. The slab waveguide method is the fastest, and even when only one slab waveguide mode is used the propagation constant for the fundamental mode can be calculated with an error of less than 1%. The slab waveguide method also gives very accurate results for the propagation constant for higher order modes.&lt; &gt;</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/50.219576</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0733-8724
ispartof Journal of lightwave technology, 1993-03, Vol.11 (3), p.429-433
issn 0733-8724
1558-2213
language eng
recordid cdi_pascalfrancis_primary_4848528
source IEEE Electronic Library (IEL) Journals
subjects Applied sciences
Circuit properties
Electric, optical and optoelectronic circuits
Electronics
Exact sciences and technology
Harmonic analysis
Integrated optics. Optical fibers and wave guides
Moment methods
Optical and optoelectronic circuits
Optical refraction
Optical waveguides
Partial differential equations
Propagation constant
Rectangular waveguides
Slabs
title Detailed comparison of two approximate methods for the solution of the scalar wave equation for a rectangular optical waveguide
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T17%3A39%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detailed%20comparison%20of%20two%20approximate%20methods%20for%20the%20solution%20of%20the%20scalar%20wave%20equation%20for%20a%20rectangular%20optical%20waveguide&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Rasmussen,%20T.&rft.date=1993-03-01&rft.volume=11&rft.issue=3&rft.spage=429&rft.epage=433&rft.pages=429-433&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/50.219576&rft_dat=%3Cproquest_pasca%3E28269869%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3226-91f9230c52dd33666fa2e1d3802df55024c4aa8c4b72f1f41f259bff536215a13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28269869&rft_id=info:pmid/&rft_ieee_id=219576&rfr_iscdi=true