Loading…
Design aspects of MOS-controlled thyristor elements: technology, simulation, and experimental results
2.5-kV thyristor devices have been fabricated with integrated MOS controlled n/sup +/-emitter shorts and a bipolar turn-on gate using a p-channel DMOS technology. Square-cell geometries with pitch variations ranging from 15 to 30 mu m were implemented in one- and two-dimensional arrays with up to 20...
Saved in:
Published in: | IEEE transactions on electron devices 1991-07, Vol.38 (7), p.1605-1611 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c365t-bedd2d43a8696be4c50e802e7daa65f295a8b01187fef836926ec28e444514e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c365t-bedd2d43a8696be4c50e802e7daa65f295a8b01187fef836926ec28e444514e3 |
container_end_page | 1611 |
container_issue | 7 |
container_start_page | 1605 |
container_title | IEEE transactions on electron devices |
container_volume | 38 |
creator | Bauer, F. Halder, E. Hofmann, K. Haddon, H. Roggwiller, P. Stockmeier, T. Burgler, J. Fichtner, W. Muller, S. Westermann, M. Moret, J.-M. Vuilleumier, R. |
description | 2.5-kV thyristor devices have been fabricated with integrated MOS controlled n/sup +/-emitter shorts and a bipolar turn-on gate using a p-channel DMOS technology. Square-cell geometries with pitch variations ranging from 15 to 30 mu m were implemented in one- and two-dimensional arrays with up to 20000 units. The impact of the cell pitch on the turn-off performance and the on-state voltage was studied for arrays with constant cathode area as well as for single-cell structures. By realizing MOS components with submicrometer channel lengths, scaled single cells are shown to turn off with current densities of several kiloamperes per square centimeter at a gate bias of 5 V. In the case of multi-cell ensembles, turn-off performance is limited due to inhomogeneous current distribution. Critical process parameters as well as the device behavior were optimized through multidimensional numerical simulation.< > |
doi_str_mv | 10.1109/16.85156 |
format | article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_4983915</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>85156</ieee_id><sourcerecordid>28258672</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-bedd2d43a8696be4c50e802e7daa65f295a8b01187fef836926ec28e444514e3</originalsourceid><addsrcrecordid>eNqN0T1PwzAQBmALgUQpSKxsHhBiICV2bMdmQ3xLIAa6R65zaYPcuPhcif57Ulp1hel0ukfvcC8hpywfMZaba6ZGWjKp9siASVlmRgm1TwZ5znRmCl0ckiPEz35VQvABgXvAdtpRiwtwCWlo6Nv7R-ZCl2LwHmqaZqvYYgqRgoc5dAlvaAI364IP09UVxXa-9Da1obuitqspfC8gtmtoPY2AS5_wmBw01iOcbOeQjB8fxnfP2ev708vd7WvmCiVTNoG65rUorFZGTUA4mYPOOZS1tUo23EirJzljumyg0YUyXIHjGoQQkgkohuRiE7uI4WsJmKp5iw68tx2EJVZc69JIrv8BudSq5H9DyUopRNHDyw10MSBGaKpF_wQbVxXLq3UxFVPVbzE9Pd9mWnTWN9F2rsWdF0YXhsmenW1YCwC76ybiB0KIleU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25175443</pqid></control><display><type>article</type><title>Design aspects of MOS-controlled thyristor elements: technology, simulation, and experimental results</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Bauer, F. ; Halder, E. ; Hofmann, K. ; Haddon, H. ; Roggwiller, P. ; Stockmeier, T. ; Burgler, J. ; Fichtner, W. ; Muller, S. ; Westermann, M. ; Moret, J.-M. ; Vuilleumier, R.</creator><creatorcontrib>Bauer, F. ; Halder, E. ; Hofmann, K. ; Haddon, H. ; Roggwiller, P. ; Stockmeier, T. ; Burgler, J. ; Fichtner, W. ; Muller, S. ; Westermann, M. ; Moret, J.-M. ; Vuilleumier, R.</creatorcontrib><description>2.5-kV thyristor devices have been fabricated with integrated MOS controlled n/sup +/-emitter shorts and a bipolar turn-on gate using a p-channel DMOS technology. Square-cell geometries with pitch variations ranging from 15 to 30 mu m were implemented in one- and two-dimensional arrays with up to 20000 units. The impact of the cell pitch on the turn-off performance and the on-state voltage was studied for arrays with constant cathode area as well as for single-cell structures. By realizing MOS components with submicrometer channel lengths, scaled single cells are shown to turn off with current densities of several kiloamperes per square centimeter at a gate bias of 5 V. In the case of multi-cell ensembles, turn-off performance is limited due to inhomogeneous current distribution. Critical process parameters as well as the device behavior were optimized through multidimensional numerical simulation.< ></description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/16.85156</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Circuits ; Current density ; Electronics ; Exact sciences and technology ; Insulated gate bipolar transistors ; Insulation ; MOS devices ; Other multijunction devices. Power transistors. Thyristors ; Power electronics ; Power semiconductor devices ; Power semiconductor switches ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Thyristors ; Voltage</subject><ispartof>IEEE transactions on electron devices, 1991-07, Vol.38 (7), p.1605-1611</ispartof><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-bedd2d43a8696be4c50e802e7daa65f295a8b01187fef836926ec28e444514e3</citedby><cites>FETCH-LOGICAL-c365t-bedd2d43a8696be4c50e802e7daa65f295a8b01187fef836926ec28e444514e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/85156$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54774</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4983915$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bauer, F.</creatorcontrib><creatorcontrib>Halder, E.</creatorcontrib><creatorcontrib>Hofmann, K.</creatorcontrib><creatorcontrib>Haddon, H.</creatorcontrib><creatorcontrib>Roggwiller, P.</creatorcontrib><creatorcontrib>Stockmeier, T.</creatorcontrib><creatorcontrib>Burgler, J.</creatorcontrib><creatorcontrib>Fichtner, W.</creatorcontrib><creatorcontrib>Muller, S.</creatorcontrib><creatorcontrib>Westermann, M.</creatorcontrib><creatorcontrib>Moret, J.-M.</creatorcontrib><creatorcontrib>Vuilleumier, R.</creatorcontrib><title>Design aspects of MOS-controlled thyristor elements: technology, simulation, and experimental results</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>2.5-kV thyristor devices have been fabricated with integrated MOS controlled n/sup +/-emitter shorts and a bipolar turn-on gate using a p-channel DMOS technology. Square-cell geometries with pitch variations ranging from 15 to 30 mu m were implemented in one- and two-dimensional arrays with up to 20000 units. The impact of the cell pitch on the turn-off performance and the on-state voltage was studied for arrays with constant cathode area as well as for single-cell structures. By realizing MOS components with submicrometer channel lengths, scaled single cells are shown to turn off with current densities of several kiloamperes per square centimeter at a gate bias of 5 V. In the case of multi-cell ensembles, turn-off performance is limited due to inhomogeneous current distribution. Critical process parameters as well as the device behavior were optimized through multidimensional numerical simulation.< ></description><subject>Applied sciences</subject><subject>Circuits</subject><subject>Current density</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Insulated gate bipolar transistors</subject><subject>Insulation</subject><subject>MOS devices</subject><subject>Other multijunction devices. Power transistors. Thyristors</subject><subject>Power electronics</subject><subject>Power semiconductor devices</subject><subject>Power semiconductor switches</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Thyristors</subject><subject>Voltage</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><recordid>eNqN0T1PwzAQBmALgUQpSKxsHhBiICV2bMdmQ3xLIAa6R65zaYPcuPhcif57Ulp1hel0ukfvcC8hpywfMZaba6ZGWjKp9siASVlmRgm1TwZ5znRmCl0ckiPEz35VQvABgXvAdtpRiwtwCWlo6Nv7R-ZCl2LwHmqaZqvYYgqRgoc5dAlvaAI364IP09UVxXa-9Da1obuitqspfC8gtmtoPY2AS5_wmBw01iOcbOeQjB8fxnfP2ev708vd7WvmCiVTNoG65rUorFZGTUA4mYPOOZS1tUo23EirJzljumyg0YUyXIHjGoQQkgkohuRiE7uI4WsJmKp5iw68tx2EJVZc69JIrv8BudSq5H9DyUopRNHDyw10MSBGaKpF_wQbVxXLq3UxFVPVbzE9Pd9mWnTWN9F2rsWdF0YXhsmenW1YCwC76ybiB0KIleU</recordid><startdate>19910701</startdate><enddate>19910701</enddate><creator>Bauer, F.</creator><creator>Halder, E.</creator><creator>Hofmann, K.</creator><creator>Haddon, H.</creator><creator>Roggwiller, P.</creator><creator>Stockmeier, T.</creator><creator>Burgler, J.</creator><creator>Fichtner, W.</creator><creator>Muller, S.</creator><creator>Westermann, M.</creator><creator>Moret, J.-M.</creator><creator>Vuilleumier, R.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7SP</scope><scope>7U5</scope></search><sort><creationdate>19910701</creationdate><title>Design aspects of MOS-controlled thyristor elements: technology, simulation, and experimental results</title><author>Bauer, F. ; Halder, E. ; Hofmann, K. ; Haddon, H. ; Roggwiller, P. ; Stockmeier, T. ; Burgler, J. ; Fichtner, W. ; Muller, S. ; Westermann, M. ; Moret, J.-M. ; Vuilleumier, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-bedd2d43a8696be4c50e802e7daa65f295a8b01187fef836926ec28e444514e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Applied sciences</topic><topic>Circuits</topic><topic>Current density</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Insulated gate bipolar transistors</topic><topic>Insulation</topic><topic>MOS devices</topic><topic>Other multijunction devices. Power transistors. Thyristors</topic><topic>Power electronics</topic><topic>Power semiconductor devices</topic><topic>Power semiconductor switches</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Thyristors</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bauer, F.</creatorcontrib><creatorcontrib>Halder, E.</creatorcontrib><creatorcontrib>Hofmann, K.</creatorcontrib><creatorcontrib>Haddon, H.</creatorcontrib><creatorcontrib>Roggwiller, P.</creatorcontrib><creatorcontrib>Stockmeier, T.</creatorcontrib><creatorcontrib>Burgler, J.</creatorcontrib><creatorcontrib>Fichtner, W.</creatorcontrib><creatorcontrib>Muller, S.</creatorcontrib><creatorcontrib>Westermann, M.</creatorcontrib><creatorcontrib>Moret, J.-M.</creatorcontrib><creatorcontrib>Vuilleumier, R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bauer, F.</au><au>Halder, E.</au><au>Hofmann, K.</au><au>Haddon, H.</au><au>Roggwiller, P.</au><au>Stockmeier, T.</au><au>Burgler, J.</au><au>Fichtner, W.</au><au>Muller, S.</au><au>Westermann, M.</au><au>Moret, J.-M.</au><au>Vuilleumier, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design aspects of MOS-controlled thyristor elements: technology, simulation, and experimental results</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>1991-07-01</date><risdate>1991</risdate><volume>38</volume><issue>7</issue><spage>1605</spage><epage>1611</epage><pages>1605-1611</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>2.5-kV thyristor devices have been fabricated with integrated MOS controlled n/sup +/-emitter shorts and a bipolar turn-on gate using a p-channel DMOS technology. Square-cell geometries with pitch variations ranging from 15 to 30 mu m were implemented in one- and two-dimensional arrays with up to 20000 units. The impact of the cell pitch on the turn-off performance and the on-state voltage was studied for arrays with constant cathode area as well as for single-cell structures. By realizing MOS components with submicrometer channel lengths, scaled single cells are shown to turn off with current densities of several kiloamperes per square centimeter at a gate bias of 5 V. In the case of multi-cell ensembles, turn-off performance is limited due to inhomogeneous current distribution. Critical process parameters as well as the device behavior were optimized through multidimensional numerical simulation.< ></abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/16.85156</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 1991-07, Vol.38 (7), p.1605-1611 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_pascalfrancis_primary_4983915 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Applied sciences Circuits Current density Electronics Exact sciences and technology Insulated gate bipolar transistors Insulation MOS devices Other multijunction devices. Power transistors. Thyristors Power electronics Power semiconductor devices Power semiconductor switches Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Thyristors Voltage |
title | Design aspects of MOS-controlled thyristor elements: technology, simulation, and experimental results |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A59%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20aspects%20of%20MOS-controlled%20thyristor%20elements:%20technology,%20simulation,%20and%20experimental%20results&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Bauer,%20F.&rft.date=1991-07-01&rft.volume=38&rft.issue=7&rft.spage=1605&rft.epage=1611&rft.pages=1605-1611&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/16.85156&rft_dat=%3Cproquest_pasca%3E28258672%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c365t-bedd2d43a8696be4c50e802e7daa65f295a8b01187fef836926ec28e444514e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=25175443&rft_id=info:pmid/&rft_ieee_id=85156&rfr_iscdi=true |