Loading…

Design aspects of MOS-controlled thyristor elements: technology, simulation, and experimental results

2.5-kV thyristor devices have been fabricated with integrated MOS controlled n/sup +/-emitter shorts and a bipolar turn-on gate using a p-channel DMOS technology. Square-cell geometries with pitch variations ranging from 15 to 30 mu m were implemented in one- and two-dimensional arrays with up to 20...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on electron devices 1991-07, Vol.38 (7), p.1605-1611
Main Authors: Bauer, F., Halder, E., Hofmann, K., Haddon, H., Roggwiller, P., Stockmeier, T., Burgler, J., Fichtner, W., Muller, S., Westermann, M., Moret, J.-M., Vuilleumier, R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c365t-bedd2d43a8696be4c50e802e7daa65f295a8b01187fef836926ec28e444514e3
cites cdi_FETCH-LOGICAL-c365t-bedd2d43a8696be4c50e802e7daa65f295a8b01187fef836926ec28e444514e3
container_end_page 1611
container_issue 7
container_start_page 1605
container_title IEEE transactions on electron devices
container_volume 38
creator Bauer, F.
Halder, E.
Hofmann, K.
Haddon, H.
Roggwiller, P.
Stockmeier, T.
Burgler, J.
Fichtner, W.
Muller, S.
Westermann, M.
Moret, J.-M.
Vuilleumier, R.
description 2.5-kV thyristor devices have been fabricated with integrated MOS controlled n/sup +/-emitter shorts and a bipolar turn-on gate using a p-channel DMOS technology. Square-cell geometries with pitch variations ranging from 15 to 30 mu m were implemented in one- and two-dimensional arrays with up to 20000 units. The impact of the cell pitch on the turn-off performance and the on-state voltage was studied for arrays with constant cathode area as well as for single-cell structures. By realizing MOS components with submicrometer channel lengths, scaled single cells are shown to turn off with current densities of several kiloamperes per square centimeter at a gate bias of 5 V. In the case of multi-cell ensembles, turn-off performance is limited due to inhomogeneous current distribution. Critical process parameters as well as the device behavior were optimized through multidimensional numerical simulation.< >
doi_str_mv 10.1109/16.85156
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_4983915</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>85156</ieee_id><sourcerecordid>28258672</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-bedd2d43a8696be4c50e802e7daa65f295a8b01187fef836926ec28e444514e3</originalsourceid><addsrcrecordid>eNqN0T1PwzAQBmALgUQpSKxsHhBiICV2bMdmQ3xLIAa6R65zaYPcuPhcif57Ulp1hel0ukfvcC8hpywfMZaba6ZGWjKp9siASVlmRgm1TwZ5znRmCl0ckiPEz35VQvABgXvAdtpRiwtwCWlo6Nv7R-ZCl2LwHmqaZqvYYgqRgoc5dAlvaAI364IP09UVxXa-9Da1obuitqspfC8gtmtoPY2AS5_wmBw01iOcbOeQjB8fxnfP2ev708vd7WvmCiVTNoG65rUorFZGTUA4mYPOOZS1tUo23EirJzljumyg0YUyXIHjGoQQkgkohuRiE7uI4WsJmKp5iw68tx2EJVZc69JIrv8BudSq5H9DyUopRNHDyw10MSBGaKpF_wQbVxXLq3UxFVPVbzE9Pd9mWnTWN9F2rsWdF0YXhsmenW1YCwC76ybiB0KIleU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25175443</pqid></control><display><type>article</type><title>Design aspects of MOS-controlled thyristor elements: technology, simulation, and experimental results</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Bauer, F. ; Halder, E. ; Hofmann, K. ; Haddon, H. ; Roggwiller, P. ; Stockmeier, T. ; Burgler, J. ; Fichtner, W. ; Muller, S. ; Westermann, M. ; Moret, J.-M. ; Vuilleumier, R.</creator><creatorcontrib>Bauer, F. ; Halder, E. ; Hofmann, K. ; Haddon, H. ; Roggwiller, P. ; Stockmeier, T. ; Burgler, J. ; Fichtner, W. ; Muller, S. ; Westermann, M. ; Moret, J.-M. ; Vuilleumier, R.</creatorcontrib><description>2.5-kV thyristor devices have been fabricated with integrated MOS controlled n/sup +/-emitter shorts and a bipolar turn-on gate using a p-channel DMOS technology. Square-cell geometries with pitch variations ranging from 15 to 30 mu m were implemented in one- and two-dimensional arrays with up to 20000 units. The impact of the cell pitch on the turn-off performance and the on-state voltage was studied for arrays with constant cathode area as well as for single-cell structures. By realizing MOS components with submicrometer channel lengths, scaled single cells are shown to turn off with current densities of several kiloamperes per square centimeter at a gate bias of 5 V. In the case of multi-cell ensembles, turn-off performance is limited due to inhomogeneous current distribution. Critical process parameters as well as the device behavior were optimized through multidimensional numerical simulation.&lt; &gt;</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/16.85156</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Circuits ; Current density ; Electronics ; Exact sciences and technology ; Insulated gate bipolar transistors ; Insulation ; MOS devices ; Other multijunction devices. Power transistors. Thyristors ; Power electronics ; Power semiconductor devices ; Power semiconductor switches ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Thyristors ; Voltage</subject><ispartof>IEEE transactions on electron devices, 1991-07, Vol.38 (7), p.1605-1611</ispartof><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-bedd2d43a8696be4c50e802e7daa65f295a8b01187fef836926ec28e444514e3</citedby><cites>FETCH-LOGICAL-c365t-bedd2d43a8696be4c50e802e7daa65f295a8b01187fef836926ec28e444514e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/85156$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54774</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4983915$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bauer, F.</creatorcontrib><creatorcontrib>Halder, E.</creatorcontrib><creatorcontrib>Hofmann, K.</creatorcontrib><creatorcontrib>Haddon, H.</creatorcontrib><creatorcontrib>Roggwiller, P.</creatorcontrib><creatorcontrib>Stockmeier, T.</creatorcontrib><creatorcontrib>Burgler, J.</creatorcontrib><creatorcontrib>Fichtner, W.</creatorcontrib><creatorcontrib>Muller, S.</creatorcontrib><creatorcontrib>Westermann, M.</creatorcontrib><creatorcontrib>Moret, J.-M.</creatorcontrib><creatorcontrib>Vuilleumier, R.</creatorcontrib><title>Design aspects of MOS-controlled thyristor elements: technology, simulation, and experimental results</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>2.5-kV thyristor devices have been fabricated with integrated MOS controlled n/sup +/-emitter shorts and a bipolar turn-on gate using a p-channel DMOS technology. Square-cell geometries with pitch variations ranging from 15 to 30 mu m were implemented in one- and two-dimensional arrays with up to 20000 units. The impact of the cell pitch on the turn-off performance and the on-state voltage was studied for arrays with constant cathode area as well as for single-cell structures. By realizing MOS components with submicrometer channel lengths, scaled single cells are shown to turn off with current densities of several kiloamperes per square centimeter at a gate bias of 5 V. In the case of multi-cell ensembles, turn-off performance is limited due to inhomogeneous current distribution. Critical process parameters as well as the device behavior were optimized through multidimensional numerical simulation.&lt; &gt;</description><subject>Applied sciences</subject><subject>Circuits</subject><subject>Current density</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Insulated gate bipolar transistors</subject><subject>Insulation</subject><subject>MOS devices</subject><subject>Other multijunction devices. Power transistors. Thyristors</subject><subject>Power electronics</subject><subject>Power semiconductor devices</subject><subject>Power semiconductor switches</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Thyristors</subject><subject>Voltage</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><recordid>eNqN0T1PwzAQBmALgUQpSKxsHhBiICV2bMdmQ3xLIAa6R65zaYPcuPhcif57Ulp1hel0ukfvcC8hpywfMZaba6ZGWjKp9siASVlmRgm1TwZ5znRmCl0ckiPEz35VQvABgXvAdtpRiwtwCWlo6Nv7R-ZCl2LwHmqaZqvYYgqRgoc5dAlvaAI364IP09UVxXa-9Da1obuitqspfC8gtmtoPY2AS5_wmBw01iOcbOeQjB8fxnfP2ev708vd7WvmCiVTNoG65rUorFZGTUA4mYPOOZS1tUo23EirJzljumyg0YUyXIHjGoQQkgkohuRiE7uI4WsJmKp5iw68tx2EJVZc69JIrv8BudSq5H9DyUopRNHDyw10MSBGaKpF_wQbVxXLq3UxFVPVbzE9Pd9mWnTWN9F2rsWdF0YXhsmenW1YCwC76ybiB0KIleU</recordid><startdate>19910701</startdate><enddate>19910701</enddate><creator>Bauer, F.</creator><creator>Halder, E.</creator><creator>Hofmann, K.</creator><creator>Haddon, H.</creator><creator>Roggwiller, P.</creator><creator>Stockmeier, T.</creator><creator>Burgler, J.</creator><creator>Fichtner, W.</creator><creator>Muller, S.</creator><creator>Westermann, M.</creator><creator>Moret, J.-M.</creator><creator>Vuilleumier, R.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7SP</scope><scope>7U5</scope></search><sort><creationdate>19910701</creationdate><title>Design aspects of MOS-controlled thyristor elements: technology, simulation, and experimental results</title><author>Bauer, F. ; Halder, E. ; Hofmann, K. ; Haddon, H. ; Roggwiller, P. ; Stockmeier, T. ; Burgler, J. ; Fichtner, W. ; Muller, S. ; Westermann, M. ; Moret, J.-M. ; Vuilleumier, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-bedd2d43a8696be4c50e802e7daa65f295a8b01187fef836926ec28e444514e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Applied sciences</topic><topic>Circuits</topic><topic>Current density</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Insulated gate bipolar transistors</topic><topic>Insulation</topic><topic>MOS devices</topic><topic>Other multijunction devices. Power transistors. Thyristors</topic><topic>Power electronics</topic><topic>Power semiconductor devices</topic><topic>Power semiconductor switches</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Thyristors</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bauer, F.</creatorcontrib><creatorcontrib>Halder, E.</creatorcontrib><creatorcontrib>Hofmann, K.</creatorcontrib><creatorcontrib>Haddon, H.</creatorcontrib><creatorcontrib>Roggwiller, P.</creatorcontrib><creatorcontrib>Stockmeier, T.</creatorcontrib><creatorcontrib>Burgler, J.</creatorcontrib><creatorcontrib>Fichtner, W.</creatorcontrib><creatorcontrib>Muller, S.</creatorcontrib><creatorcontrib>Westermann, M.</creatorcontrib><creatorcontrib>Moret, J.-M.</creatorcontrib><creatorcontrib>Vuilleumier, R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bauer, F.</au><au>Halder, E.</au><au>Hofmann, K.</au><au>Haddon, H.</au><au>Roggwiller, P.</au><au>Stockmeier, T.</au><au>Burgler, J.</au><au>Fichtner, W.</au><au>Muller, S.</au><au>Westermann, M.</au><au>Moret, J.-M.</au><au>Vuilleumier, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design aspects of MOS-controlled thyristor elements: technology, simulation, and experimental results</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>1991-07-01</date><risdate>1991</risdate><volume>38</volume><issue>7</issue><spage>1605</spage><epage>1611</epage><pages>1605-1611</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>2.5-kV thyristor devices have been fabricated with integrated MOS controlled n/sup +/-emitter shorts and a bipolar turn-on gate using a p-channel DMOS technology. Square-cell geometries with pitch variations ranging from 15 to 30 mu m were implemented in one- and two-dimensional arrays with up to 20000 units. The impact of the cell pitch on the turn-off performance and the on-state voltage was studied for arrays with constant cathode area as well as for single-cell structures. By realizing MOS components with submicrometer channel lengths, scaled single cells are shown to turn off with current densities of several kiloamperes per square centimeter at a gate bias of 5 V. In the case of multi-cell ensembles, turn-off performance is limited due to inhomogeneous current distribution. Critical process parameters as well as the device behavior were optimized through multidimensional numerical simulation.&lt; &gt;</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/16.85156</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 1991-07, Vol.38 (7), p.1605-1611
issn 0018-9383
1557-9646
language eng
recordid cdi_pascalfrancis_primary_4983915
source IEEE Electronic Library (IEL) Journals
subjects Applied sciences
Circuits
Current density
Electronics
Exact sciences and technology
Insulated gate bipolar transistors
Insulation
MOS devices
Other multijunction devices. Power transistors. Thyristors
Power electronics
Power semiconductor devices
Power semiconductor switches
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Thyristors
Voltage
title Design aspects of MOS-controlled thyristor elements: technology, simulation, and experimental results
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A59%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20aspects%20of%20MOS-controlled%20thyristor%20elements:%20technology,%20simulation,%20and%20experimental%20results&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Bauer,%20F.&rft.date=1991-07-01&rft.volume=38&rft.issue=7&rft.spage=1605&rft.epage=1611&rft.pages=1605-1611&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/16.85156&rft_dat=%3Cproquest_pasca%3E28258672%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c365t-bedd2d43a8696be4c50e802e7daa65f295a8b01187fef836926ec28e444514e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=25175443&rft_id=info:pmid/&rft_ieee_id=85156&rfr_iscdi=true