Loading…

A model for charge transfer in buried-channel charge-coupled devices at low temperature

Charge transfer in buried-channel charge-coupled devices (CCDs) is explored with a one-dimensional numerical model which describes the capture and emission of electrons from a shallow donor level in silicon through the use of the Shockley-Read-Hall generation-recombination theory. Incorporated in th...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on electron devices 1991-05, Vol.38 (5), p.1162-1174
Main Authors: Banghart, E.K., Lavine, J.P., Trabka, E.A., Nelson, E.T., Burkey, B.C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c303t-fea1969ce92c0991dba74d88ea39e1693488bcbf8505ea6d7d94be8de34e42b53
cites cdi_FETCH-LOGICAL-c303t-fea1969ce92c0991dba74d88ea39e1693488bcbf8505ea6d7d94be8de34e42b53
container_end_page 1174
container_issue 5
container_start_page 1162
container_title IEEE transactions on electron devices
container_volume 38
creator Banghart, E.K.
Lavine, J.P.
Trabka, E.A.
Nelson, E.T.
Burkey, B.C.
description Charge transfer in buried-channel charge-coupled devices (CCDs) is explored with a one-dimensional numerical model which describes the capture and emission of electrons from a shallow donor level in silicon through the use of the Shockley-Read-Hall generation-recombination theory. Incorporated in the model are the three-dimensional Poole-Frenkel barrier lowering theory of A. K. Jonscher (1967) and J. L. Hartke (1968) and the low-temperature form of Poisson's equation. Reasonable agreement of the model with experimental data taken from the buried-channel CCDs of a PtSi Schottky barrier infrared image sensor is found. Moreover, the value for the capture cross section of electrons to the shallow phosphorus level in silicon inferred from the model follows the cascade theory for capture by M. Lax (1959) and agrees roughly with determinations made by other experimenters.< >
doi_str_mv 10.1109/16.78394
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_5032815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>78394</ieee_id><sourcerecordid>28387917</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-fea1969ce92c0991dba74d88ea39e1693488bcbf8505ea6d7d94be8de34e42b53</originalsourceid><addsrcrecordid>eNo90E1LxDAQBuAgCq6r4NVbDiJesiZNmibHZfELFrwoHkuaTLSSfpi0iv_eapc9DcM8vAMvQueMrhij-obJVaG4FgdowfK8IFoKeYgWlDJFNFf8GJ2k9DGtUohsgV7XuOkcBOy7iO27iW-Ah2ja5CHiusXVGGtwZLq07aRmQWw39gEcdvBVW0jYDDh033iApodohjHCKTryJiQ4280lerm7fd48kO3T_eNmvSWWUz4QD4ZpqS3ozFKtmatMIZxSYLgGJjUXSlW28iqnORjpCqdFBcoBFyCyKudLdDXn9rH7HCENZVMnCyGYFroxlZniqtCsmOD1DG3sUorgyz7WjYk_JaPlX3Mlk-V_cxO93GWaZE3wUx22TnufU54p9vf6YmY1AOyvc8Qv1EN17g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28387917</pqid></control><display><type>article</type><title>A model for charge transfer in buried-channel charge-coupled devices at low temperature</title><source>IEEE Xplore (Online service)</source><creator>Banghart, E.K. ; Lavine, J.P. ; Trabka, E.A. ; Nelson, E.T. ; Burkey, B.C.</creator><creatorcontrib>Banghart, E.K. ; Lavine, J.P. ; Trabka, E.A. ; Nelson, E.T. ; Burkey, B.C.</creatorcontrib><description>Charge transfer in buried-channel charge-coupled devices (CCDs) is explored with a one-dimensional numerical model which describes the capture and emission of electrons from a shallow donor level in silicon through the use of the Shockley-Read-Hall generation-recombination theory. Incorporated in the model are the three-dimensional Poole-Frenkel barrier lowering theory of A. K. Jonscher (1967) and J. L. Hartke (1968) and the low-temperature form of Poisson's equation. Reasonable agreement of the model with experimental data taken from the buried-channel CCDs of a PtSi Schottky barrier infrared image sensor is found. Moreover, the value for the capture cross section of electrons to the shallow phosphorus level in silicon inferred from the model follows the cascade theory for capture by M. Lax (1959) and agrees roughly with determinations made by other experimenters.&lt; &gt;</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/16.78394</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Charge coupled devices ; Charge transfer ; Charge transfer devices ; Electron emission ; Electronics ; Exact sciences and technology ; Infrared detectors ; Infrared imaging ; Numerical models ; Poisson equations ; Schottky barriers ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Silicon ; Temperature sensors</subject><ispartof>IEEE transactions on electron devices, 1991-05, Vol.38 (5), p.1162-1174</ispartof><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c303t-fea1969ce92c0991dba74d88ea39e1693488bcbf8505ea6d7d94be8de34e42b53</citedby><cites>FETCH-LOGICAL-c303t-fea1969ce92c0991dba74d88ea39e1693488bcbf8505ea6d7d94be8de34e42b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/78394$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=5032815$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Banghart, E.K.</creatorcontrib><creatorcontrib>Lavine, J.P.</creatorcontrib><creatorcontrib>Trabka, E.A.</creatorcontrib><creatorcontrib>Nelson, E.T.</creatorcontrib><creatorcontrib>Burkey, B.C.</creatorcontrib><title>A model for charge transfer in buried-channel charge-coupled devices at low temperature</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>Charge transfer in buried-channel charge-coupled devices (CCDs) is explored with a one-dimensional numerical model which describes the capture and emission of electrons from a shallow donor level in silicon through the use of the Shockley-Read-Hall generation-recombination theory. Incorporated in the model are the three-dimensional Poole-Frenkel barrier lowering theory of A. K. Jonscher (1967) and J. L. Hartke (1968) and the low-temperature form of Poisson's equation. Reasonable agreement of the model with experimental data taken from the buried-channel CCDs of a PtSi Schottky barrier infrared image sensor is found. Moreover, the value for the capture cross section of electrons to the shallow phosphorus level in silicon inferred from the model follows the cascade theory for capture by M. Lax (1959) and agrees roughly with determinations made by other experimenters.&lt; &gt;</description><subject>Applied sciences</subject><subject>Charge coupled devices</subject><subject>Charge transfer</subject><subject>Charge transfer devices</subject><subject>Electron emission</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Infrared detectors</subject><subject>Infrared imaging</subject><subject>Numerical models</subject><subject>Poisson equations</subject><subject>Schottky barriers</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Silicon</subject><subject>Temperature sensors</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><recordid>eNo90E1LxDAQBuAgCq6r4NVbDiJesiZNmibHZfELFrwoHkuaTLSSfpi0iv_eapc9DcM8vAMvQueMrhij-obJVaG4FgdowfK8IFoKeYgWlDJFNFf8GJ2k9DGtUohsgV7XuOkcBOy7iO27iW-Ah2ja5CHiusXVGGtwZLq07aRmQWw39gEcdvBVW0jYDDh033iApodohjHCKTryJiQ4280lerm7fd48kO3T_eNmvSWWUz4QD4ZpqS3ozFKtmatMIZxSYLgGJjUXSlW28iqnORjpCqdFBcoBFyCyKudLdDXn9rH7HCENZVMnCyGYFroxlZniqtCsmOD1DG3sUorgyz7WjYk_JaPlX3Mlk-V_cxO93GWaZE3wUx22TnufU54p9vf6YmY1AOyvc8Qv1EN17g</recordid><startdate>19910501</startdate><enddate>19910501</enddate><creator>Banghart, E.K.</creator><creator>Lavine, J.P.</creator><creator>Trabka, E.A.</creator><creator>Nelson, E.T.</creator><creator>Burkey, B.C.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>19910501</creationdate><title>A model for charge transfer in buried-channel charge-coupled devices at low temperature</title><author>Banghart, E.K. ; Lavine, J.P. ; Trabka, E.A. ; Nelson, E.T. ; Burkey, B.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-fea1969ce92c0991dba74d88ea39e1693488bcbf8505ea6d7d94be8de34e42b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Applied sciences</topic><topic>Charge coupled devices</topic><topic>Charge transfer</topic><topic>Charge transfer devices</topic><topic>Electron emission</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Infrared detectors</topic><topic>Infrared imaging</topic><topic>Numerical models</topic><topic>Poisson equations</topic><topic>Schottky barriers</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Silicon</topic><topic>Temperature sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Banghart, E.K.</creatorcontrib><creatorcontrib>Lavine, J.P.</creatorcontrib><creatorcontrib>Trabka, E.A.</creatorcontrib><creatorcontrib>Nelson, E.T.</creatorcontrib><creatorcontrib>Burkey, B.C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Banghart, E.K.</au><au>Lavine, J.P.</au><au>Trabka, E.A.</au><au>Nelson, E.T.</au><au>Burkey, B.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A model for charge transfer in buried-channel charge-coupled devices at low temperature</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>1991-05-01</date><risdate>1991</risdate><volume>38</volume><issue>5</issue><spage>1162</spage><epage>1174</epage><pages>1162-1174</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>Charge transfer in buried-channel charge-coupled devices (CCDs) is explored with a one-dimensional numerical model which describes the capture and emission of electrons from a shallow donor level in silicon through the use of the Shockley-Read-Hall generation-recombination theory. Incorporated in the model are the three-dimensional Poole-Frenkel barrier lowering theory of A. K. Jonscher (1967) and J. L. Hartke (1968) and the low-temperature form of Poisson's equation. Reasonable agreement of the model with experimental data taken from the buried-channel CCDs of a PtSi Schottky barrier infrared image sensor is found. Moreover, the value for the capture cross section of electrons to the shallow phosphorus level in silicon inferred from the model follows the cascade theory for capture by M. Lax (1959) and agrees roughly with determinations made by other experimenters.&lt; &gt;</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/16.78394</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 1991-05, Vol.38 (5), p.1162-1174
issn 0018-9383
1557-9646
language eng
recordid cdi_pascalfrancis_primary_5032815
source IEEE Xplore (Online service)
subjects Applied sciences
Charge coupled devices
Charge transfer
Charge transfer devices
Electron emission
Electronics
Exact sciences and technology
Infrared detectors
Infrared imaging
Numerical models
Poisson equations
Schottky barriers
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Silicon
Temperature sensors
title A model for charge transfer in buried-channel charge-coupled devices at low temperature
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T08%3A16%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20model%20for%20charge%20transfer%20in%20buried-channel%20charge-coupled%20devices%20at%20low%20temperature&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Banghart,%20E.K.&rft.date=1991-05-01&rft.volume=38&rft.issue=5&rft.spage=1162&rft.epage=1174&rft.pages=1162-1174&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/16.78394&rft_dat=%3Cproquest_pasca%3E28387917%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c303t-fea1969ce92c0991dba74d88ea39e1693488bcbf8505ea6d7d94be8de34e42b53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28387917&rft_id=info:pmid/&rft_ieee_id=78394&rfr_iscdi=true