Loading…
A model for charge transfer in buried-channel charge-coupled devices at low temperature
Charge transfer in buried-channel charge-coupled devices (CCDs) is explored with a one-dimensional numerical model which describes the capture and emission of electrons from a shallow donor level in silicon through the use of the Shockley-Read-Hall generation-recombination theory. Incorporated in th...
Saved in:
Published in: | IEEE transactions on electron devices 1991-05, Vol.38 (5), p.1162-1174 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c303t-fea1969ce92c0991dba74d88ea39e1693488bcbf8505ea6d7d94be8de34e42b53 |
---|---|
cites | cdi_FETCH-LOGICAL-c303t-fea1969ce92c0991dba74d88ea39e1693488bcbf8505ea6d7d94be8de34e42b53 |
container_end_page | 1174 |
container_issue | 5 |
container_start_page | 1162 |
container_title | IEEE transactions on electron devices |
container_volume | 38 |
creator | Banghart, E.K. Lavine, J.P. Trabka, E.A. Nelson, E.T. Burkey, B.C. |
description | Charge transfer in buried-channel charge-coupled devices (CCDs) is explored with a one-dimensional numerical model which describes the capture and emission of electrons from a shallow donor level in silicon through the use of the Shockley-Read-Hall generation-recombination theory. Incorporated in the model are the three-dimensional Poole-Frenkel barrier lowering theory of A. K. Jonscher (1967) and J. L. Hartke (1968) and the low-temperature form of Poisson's equation. Reasonable agreement of the model with experimental data taken from the buried-channel CCDs of a PtSi Schottky barrier infrared image sensor is found. Moreover, the value for the capture cross section of electrons to the shallow phosphorus level in silicon inferred from the model follows the cascade theory for capture by M. Lax (1959) and agrees roughly with determinations made by other experimenters.< > |
doi_str_mv | 10.1109/16.78394 |
format | article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_5032815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>78394</ieee_id><sourcerecordid>28387917</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-fea1969ce92c0991dba74d88ea39e1693488bcbf8505ea6d7d94be8de34e42b53</originalsourceid><addsrcrecordid>eNo90E1LxDAQBuAgCq6r4NVbDiJesiZNmibHZfELFrwoHkuaTLSSfpi0iv_eapc9DcM8vAMvQueMrhij-obJVaG4FgdowfK8IFoKeYgWlDJFNFf8GJ2k9DGtUohsgV7XuOkcBOy7iO27iW-Ah2ja5CHiusXVGGtwZLq07aRmQWw39gEcdvBVW0jYDDh033iApodohjHCKTryJiQ4280lerm7fd48kO3T_eNmvSWWUz4QD4ZpqS3ozFKtmatMIZxSYLgGJjUXSlW28iqnORjpCqdFBcoBFyCyKudLdDXn9rH7HCENZVMnCyGYFroxlZniqtCsmOD1DG3sUorgyz7WjYk_JaPlX3Mlk-V_cxO93GWaZE3wUx22TnufU54p9vf6YmY1AOyvc8Qv1EN17g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28387917</pqid></control><display><type>article</type><title>A model for charge transfer in buried-channel charge-coupled devices at low temperature</title><source>IEEE Xplore (Online service)</source><creator>Banghart, E.K. ; Lavine, J.P. ; Trabka, E.A. ; Nelson, E.T. ; Burkey, B.C.</creator><creatorcontrib>Banghart, E.K. ; Lavine, J.P. ; Trabka, E.A. ; Nelson, E.T. ; Burkey, B.C.</creatorcontrib><description>Charge transfer in buried-channel charge-coupled devices (CCDs) is explored with a one-dimensional numerical model which describes the capture and emission of electrons from a shallow donor level in silicon through the use of the Shockley-Read-Hall generation-recombination theory. Incorporated in the model are the three-dimensional Poole-Frenkel barrier lowering theory of A. K. Jonscher (1967) and J. L. Hartke (1968) and the low-temperature form of Poisson's equation. Reasonable agreement of the model with experimental data taken from the buried-channel CCDs of a PtSi Schottky barrier infrared image sensor is found. Moreover, the value for the capture cross section of electrons to the shallow phosphorus level in silicon inferred from the model follows the cascade theory for capture by M. Lax (1959) and agrees roughly with determinations made by other experimenters.< ></description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/16.78394</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Charge coupled devices ; Charge transfer ; Charge transfer devices ; Electron emission ; Electronics ; Exact sciences and technology ; Infrared detectors ; Infrared imaging ; Numerical models ; Poisson equations ; Schottky barriers ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Silicon ; Temperature sensors</subject><ispartof>IEEE transactions on electron devices, 1991-05, Vol.38 (5), p.1162-1174</ispartof><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c303t-fea1969ce92c0991dba74d88ea39e1693488bcbf8505ea6d7d94be8de34e42b53</citedby><cites>FETCH-LOGICAL-c303t-fea1969ce92c0991dba74d88ea39e1693488bcbf8505ea6d7d94be8de34e42b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/78394$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=5032815$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Banghart, E.K.</creatorcontrib><creatorcontrib>Lavine, J.P.</creatorcontrib><creatorcontrib>Trabka, E.A.</creatorcontrib><creatorcontrib>Nelson, E.T.</creatorcontrib><creatorcontrib>Burkey, B.C.</creatorcontrib><title>A model for charge transfer in buried-channel charge-coupled devices at low temperature</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>Charge transfer in buried-channel charge-coupled devices (CCDs) is explored with a one-dimensional numerical model which describes the capture and emission of electrons from a shallow donor level in silicon through the use of the Shockley-Read-Hall generation-recombination theory. Incorporated in the model are the three-dimensional Poole-Frenkel barrier lowering theory of A. K. Jonscher (1967) and J. L. Hartke (1968) and the low-temperature form of Poisson's equation. Reasonable agreement of the model with experimental data taken from the buried-channel CCDs of a PtSi Schottky barrier infrared image sensor is found. Moreover, the value for the capture cross section of electrons to the shallow phosphorus level in silicon inferred from the model follows the cascade theory for capture by M. Lax (1959) and agrees roughly with determinations made by other experimenters.< ></description><subject>Applied sciences</subject><subject>Charge coupled devices</subject><subject>Charge transfer</subject><subject>Charge transfer devices</subject><subject>Electron emission</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Infrared detectors</subject><subject>Infrared imaging</subject><subject>Numerical models</subject><subject>Poisson equations</subject><subject>Schottky barriers</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Silicon</subject><subject>Temperature sensors</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><recordid>eNo90E1LxDAQBuAgCq6r4NVbDiJesiZNmibHZfELFrwoHkuaTLSSfpi0iv_eapc9DcM8vAMvQueMrhij-obJVaG4FgdowfK8IFoKeYgWlDJFNFf8GJ2k9DGtUohsgV7XuOkcBOy7iO27iW-Ah2ja5CHiusXVGGtwZLq07aRmQWw39gEcdvBVW0jYDDh033iApodohjHCKTryJiQ4280lerm7fd48kO3T_eNmvSWWUz4QD4ZpqS3ozFKtmatMIZxSYLgGJjUXSlW28iqnORjpCqdFBcoBFyCyKudLdDXn9rH7HCENZVMnCyGYFroxlZniqtCsmOD1DG3sUorgyz7WjYk_JaPlX3Mlk-V_cxO93GWaZE3wUx22TnufU54p9vf6YmY1AOyvc8Qv1EN17g</recordid><startdate>19910501</startdate><enddate>19910501</enddate><creator>Banghart, E.K.</creator><creator>Lavine, J.P.</creator><creator>Trabka, E.A.</creator><creator>Nelson, E.T.</creator><creator>Burkey, B.C.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>19910501</creationdate><title>A model for charge transfer in buried-channel charge-coupled devices at low temperature</title><author>Banghart, E.K. ; Lavine, J.P. ; Trabka, E.A. ; Nelson, E.T. ; Burkey, B.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-fea1969ce92c0991dba74d88ea39e1693488bcbf8505ea6d7d94be8de34e42b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Applied sciences</topic><topic>Charge coupled devices</topic><topic>Charge transfer</topic><topic>Charge transfer devices</topic><topic>Electron emission</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Infrared detectors</topic><topic>Infrared imaging</topic><topic>Numerical models</topic><topic>Poisson equations</topic><topic>Schottky barriers</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Silicon</topic><topic>Temperature sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Banghart, E.K.</creatorcontrib><creatorcontrib>Lavine, J.P.</creatorcontrib><creatorcontrib>Trabka, E.A.</creatorcontrib><creatorcontrib>Nelson, E.T.</creatorcontrib><creatorcontrib>Burkey, B.C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Banghart, E.K.</au><au>Lavine, J.P.</au><au>Trabka, E.A.</au><au>Nelson, E.T.</au><au>Burkey, B.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A model for charge transfer in buried-channel charge-coupled devices at low temperature</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>1991-05-01</date><risdate>1991</risdate><volume>38</volume><issue>5</issue><spage>1162</spage><epage>1174</epage><pages>1162-1174</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>Charge transfer in buried-channel charge-coupled devices (CCDs) is explored with a one-dimensional numerical model which describes the capture and emission of electrons from a shallow donor level in silicon through the use of the Shockley-Read-Hall generation-recombination theory. Incorporated in the model are the three-dimensional Poole-Frenkel barrier lowering theory of A. K. Jonscher (1967) and J. L. Hartke (1968) and the low-temperature form of Poisson's equation. Reasonable agreement of the model with experimental data taken from the buried-channel CCDs of a PtSi Schottky barrier infrared image sensor is found. Moreover, the value for the capture cross section of electrons to the shallow phosphorus level in silicon inferred from the model follows the cascade theory for capture by M. Lax (1959) and agrees roughly with determinations made by other experimenters.< ></abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/16.78394</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 1991-05, Vol.38 (5), p.1162-1174 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_pascalfrancis_primary_5032815 |
source | IEEE Xplore (Online service) |
subjects | Applied sciences Charge coupled devices Charge transfer Charge transfer devices Electron emission Electronics Exact sciences and technology Infrared detectors Infrared imaging Numerical models Poisson equations Schottky barriers Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Silicon Temperature sensors |
title | A model for charge transfer in buried-channel charge-coupled devices at low temperature |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T08%3A16%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20model%20for%20charge%20transfer%20in%20buried-channel%20charge-coupled%20devices%20at%20low%20temperature&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Banghart,%20E.K.&rft.date=1991-05-01&rft.volume=38&rft.issue=5&rft.spage=1162&rft.epage=1174&rft.pages=1162-1174&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/16.78394&rft_dat=%3Cproquest_pasca%3E28387917%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c303t-fea1969ce92c0991dba74d88ea39e1693488bcbf8505ea6d7d94be8de34e42b53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28387917&rft_id=info:pmid/&rft_ieee_id=78394&rfr_iscdi=true |