Loading…

A Numerical Model for Elastohydrodynamic Analysis of Plunger and Barrel Clearances in Fuel Injection Equipment

This paper describes a numerical model developed to predict the elastohydrodynamic (coupled solid-fluid) response of unit injector fuel systems. These systems consist of a concentric barrel and plunger with a small annular clearance. During operation (axial movement of the plunger), highly non-unifo...

Full description

Saved in:
Bibliographic Details
Published in:SAE transactions 1990-01, Vol.99 (3), p.1747-1763
Main Authors: Gibson, D. H., Dionne, P. J., Singhal, A. K.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper describes a numerical model developed to predict the elastohydrodynamic (coupled solid-fluid) response of unit injector fuel systems. These systems consist of a concentric barrel and plunger with a small annular clearance. During operation (axial movement of the plunger), highly non-uniform pressure and clearance fields are developed which are strongly coupled with each other. The model simultaneously solves for the transient response of the fluid film pressure distribution and three different structural deformation components in a two-dimensional (axialcircumferential) domain. These structural components are the transverse bending of the plunger, radial expansion of the barrel, and radial growth of the plunger from a Poisson effect. The fluid film pressure distribution is governed by the transient Reynold's equation (i.e. lubrication theory) and the structural deformation components are governed by linear elastic theory. Full account is taken of the hydrostatic, hydrodynamic, and squeeze-film forces generated in the fluid. The model has been applied to several injector designs. Results have been compared with known performance characteristics and have been found to be qualitatively accurate.
ISSN:0096-736X
2577-1531