Loading…
On the minimum distance of combinatorial codes
A conjecture of V.C. Da Rocha (see Electron. Lett., vol.21, no.21, p.949-50, 1985) concerning the minimum distance of a class of combinatorial codes is proved.< >
Saved in:
Published in: | IEEE transactions on information theory 1990-07, Vol.36 (4), p.922-923 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c337t-2192b65187386bc7c9ec266b240e5102efe20e3ec9b7ccafb8246c0baef3c2da3 |
---|---|
cites | |
container_end_page | 923 |
container_issue | 4 |
container_start_page | 922 |
container_title | IEEE transactions on information theory |
container_volume | 36 |
creator | Tolhuizen, L. van Lint, J.H. |
description | A conjecture of V.C. Da Rocha (see Electron. Lett., vol.21, no.21, p.949-50, 1985) concerning the minimum distance of a class of combinatorial codes is proved.< > |
doi_str_mv | 10.1109/18.53759 |
format | article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_5542624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>53759</ieee_id><sourcerecordid>28475593</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-2192b65187386bc7c9ec266b240e5102efe20e3ec9b7ccafb8246c0baef3c2da3</originalsourceid><addsrcrecordid>eNpFkEtLAzEUhYMoWKvg1t0sRNxMzXOSLEV8QaEbXYfk9gYj86jJdOG_d2yLri6H-_HBOYRcMrpgjNo7ZhZKaGWPyIwppWvbKHlMZpQyU1spzSk5K-VzilIxPiOLVV-NH1h1qU_dtqvWqYy-B6yGWMHQhdT7ccjJt1NaYzknJ9G3BS8Od07enx7fHl7q5er59eF-WYMQeqw5szw0ihktTBNAg0XgTRO4pKgY5RiRUxQINmgAH4PhsgEaPEYBfO3FnNzsvZs8fG2xjK5LBbBtfY_DtjhupFbKigm83YOQh1IyRrfJqfP52zHqfgdxzLjdIBN6fXD6Ar6NeeqZyh-vlOQNlxN2tccSIv5_d4of-VxmtA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28475593</pqid></control><display><type>article</type><title>On the minimum distance of combinatorial codes</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Tolhuizen, L. ; van Lint, J.H.</creator><creatorcontrib>Tolhuizen, L. ; van Lint, J.H.</creatorcontrib><description>A conjecture of V.C. Da Rocha (see Electron. Lett., vol.21, no.21, p.949-50, 1985) concerning the minimum distance of a class of combinatorial codes is proved.< ></description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/18.53759</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Block codes ; Exact sciences and technology ; Informatics ; Information, signal and communications theory ; Linear code ; Polynomials ; Telecommunications and information theory</subject><ispartof>IEEE transactions on information theory, 1990-07, Vol.36 (4), p.922-923</ispartof><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-2192b65187386bc7c9ec266b240e5102efe20e3ec9b7ccafb8246c0baef3c2da3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/53759$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=5542624$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tolhuizen, L.</creatorcontrib><creatorcontrib>van Lint, J.H.</creatorcontrib><title>On the minimum distance of combinatorial codes</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>A conjecture of V.C. Da Rocha (see Electron. Lett., vol.21, no.21, p.949-50, 1985) concerning the minimum distance of a class of combinatorial codes is proved.< ></description><subject>Applied sciences</subject><subject>Block codes</subject><subject>Exact sciences and technology</subject><subject>Informatics</subject><subject>Information, signal and communications theory</subject><subject>Linear code</subject><subject>Polynomials</subject><subject>Telecommunications and information theory</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><recordid>eNpFkEtLAzEUhYMoWKvg1t0sRNxMzXOSLEV8QaEbXYfk9gYj86jJdOG_d2yLri6H-_HBOYRcMrpgjNo7ZhZKaGWPyIwppWvbKHlMZpQyU1spzSk5K-VzilIxPiOLVV-NH1h1qU_dtqvWqYy-B6yGWMHQhdT7ccjJt1NaYzknJ9G3BS8Od07enx7fHl7q5er59eF-WYMQeqw5szw0ihktTBNAg0XgTRO4pKgY5RiRUxQINmgAH4PhsgEaPEYBfO3FnNzsvZs8fG2xjK5LBbBtfY_DtjhupFbKigm83YOQh1IyRrfJqfP52zHqfgdxzLjdIBN6fXD6Ar6NeeqZyh-vlOQNlxN2tccSIv5_d4of-VxmtA</recordid><startdate>19900701</startdate><enddate>19900701</enddate><creator>Tolhuizen, L.</creator><creator>van Lint, J.H.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19900701</creationdate><title>On the minimum distance of combinatorial codes</title><author>Tolhuizen, L. ; van Lint, J.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-2192b65187386bc7c9ec266b240e5102efe20e3ec9b7ccafb8246c0baef3c2da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>Applied sciences</topic><topic>Block codes</topic><topic>Exact sciences and technology</topic><topic>Informatics</topic><topic>Information, signal and communications theory</topic><topic>Linear code</topic><topic>Polynomials</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tolhuizen, L.</creatorcontrib><creatorcontrib>van Lint, J.H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tolhuizen, L.</au><au>van Lint, J.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the minimum distance of combinatorial codes</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>1990-07-01</date><risdate>1990</risdate><volume>36</volume><issue>4</issue><spage>922</spage><epage>923</epage><pages>922-923</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>A conjecture of V.C. Da Rocha (see Electron. Lett., vol.21, no.21, p.949-50, 1985) concerning the minimum distance of a class of combinatorial codes is proved.< ></abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/18.53759</doi><tpages>2</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 1990-07, Vol.36 (4), p.922-923 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_pascalfrancis_primary_5542624 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Applied sciences Block codes Exact sciences and technology Informatics Information, signal and communications theory Linear code Polynomials Telecommunications and information theory |
title | On the minimum distance of combinatorial codes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T01%3A38%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20minimum%20distance%20of%20combinatorial%20codes&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Tolhuizen,%20L.&rft.date=1990-07-01&rft.volume=36&rft.issue=4&rft.spage=922&rft.epage=923&rft.pages=922-923&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/18.53759&rft_dat=%3Cproquest_pasca%3E28475593%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c337t-2192b65187386bc7c9ec266b240e5102efe20e3ec9b7ccafb8246c0baef3c2da3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28475593&rft_id=info:pmid/&rft_ieee_id=53759&rfr_iscdi=true |