Loading…

Microfabricated scanning tunneling microscope

A scanning tunneling microscope (STM) with dimensions 1000 mu m*200 mu m*8 mu m constructed by planar microfabrication techniques is discussed. The device incorporates a piezoelectric actuator capable of three-dimensional motion for scanning and control of the tunneling gap spacing. Operation of the...

Full description

Saved in:
Bibliographic Details
Published in:IEEE electron device letters 1989-11, Vol.10 (11), p.490-492
Main Authors: Akamine, S., Albrecht, T.R., Zdeblick, M.J., Quate, C.F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c400t-dccd810745bd3edf87676f077ea9531b13e9e7d941eed48471fbec891f30a5a43
cites cdi_FETCH-LOGICAL-c400t-dccd810745bd3edf87676f077ea9531b13e9e7d941eed48471fbec891f30a5a43
container_end_page 492
container_issue 11
container_start_page 490
container_title IEEE electron device letters
container_volume 10
creator Akamine, S.
Albrecht, T.R.
Zdeblick, M.J.
Quate, C.F.
description A scanning tunneling microscope (STM) with dimensions 1000 mu m*200 mu m*8 mu m constructed by planar microfabrication techniques is discussed. The device incorporates a piezoelectric actuator capable of three-dimensional motion for scanning and control of the tunneling gap spacing. Operation of the device has been successfully demonstrated by imaging the surface of a graphite sample with atomic resolution.< >
doi_str_mv 10.1109/55.43113
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_6679373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>43113</ieee_id><sourcerecordid>28365125</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-dccd810745bd3edf87676f077ea9531b13e9e7d941eed48471fbec891f30a5a43</originalsourceid><addsrcrecordid>eNqF0E1LAzEQBuAgCtYqePXWg4iXrZnmc49S_IKKFz2HbDKRyDZbk-3Bf2_XLb16ykAe3mFeQi6BzgFofSfEnDMAdkQmIISuqJDsmEyo4lAxoPKUnJXyRSlwrviEVK_R5S7YJkdne_Sz4mxKMX3O-m1K2A7TeiDFdRs8JyfBtgUv9u-UfDw-vC-fq9Xb08vyflU5Tmlfeee8ht1K0XiGPmgllQxUKbS1YNAAwxqVrzkgeq65gtCg0zUERq2wnE3JzZi7yd33Fktv1rE4bFubsNsWs9BMCliI_6FYKOB6gLcjHE4pGYPZ5Li2-ccANUNxRgjzV9yOXu8z7a6MNmSbXCwHL6WqmRrY1cgiIh5-x4hfBWJz8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25271485</pqid></control><display><type>article</type><title>Microfabricated scanning tunneling microscope</title><source>IEEE Xplore (Online service)</source><creator>Akamine, S. ; Albrecht, T.R. ; Zdeblick, M.J. ; Quate, C.F.</creator><creatorcontrib>Akamine, S. ; Albrecht, T.R. ; Zdeblick, M.J. ; Quate, C.F.</creatorcontrib><description>A scanning tunneling microscope (STM) with dimensions 1000 mu m*200 mu m*8 mu m constructed by planar microfabrication techniques is discussed. The device incorporates a piezoelectric actuator capable of three-dimensional motion for scanning and control of the tunneling gap spacing. Operation of the device has been successfully demonstrated by imaging the surface of a graphite sample with atomic resolution.&lt; &gt;</description><identifier>ISSN: 0741-3106</identifier><identifier>EISSN: 1558-0563</identifier><identifier>DOI: 10.1109/55.43113</identifier><identifier>CODEN: EDLEDZ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Electrodes ; Electron, positron and ion microscopes, electron diffractometers and related techniques ; Exact sciences and technology ; Instruments ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Microscopy ; Motion control ; Physics ; Piezoelectric actuators ; Piezoelectric films ; Plasma measurements ; Surface topography ; Tunneling ; Zinc oxide</subject><ispartof>IEEE electron device letters, 1989-11, Vol.10 (11), p.490-492</ispartof><rights>1990 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-dccd810745bd3edf87676f077ea9531b13e9e7d941eed48471fbec891f30a5a43</citedby><cites>FETCH-LOGICAL-c400t-dccd810745bd3edf87676f077ea9531b13e9e7d941eed48471fbec891f30a5a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/43113$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=6679373$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Akamine, S.</creatorcontrib><creatorcontrib>Albrecht, T.R.</creatorcontrib><creatorcontrib>Zdeblick, M.J.</creatorcontrib><creatorcontrib>Quate, C.F.</creatorcontrib><title>Microfabricated scanning tunneling microscope</title><title>IEEE electron device letters</title><addtitle>LED</addtitle><description>A scanning tunneling microscope (STM) with dimensions 1000 mu m*200 mu m*8 mu m constructed by planar microfabrication techniques is discussed. The device incorporates a piezoelectric actuator capable of three-dimensional motion for scanning and control of the tunneling gap spacing. Operation of the device has been successfully demonstrated by imaging the surface of a graphite sample with atomic resolution.&lt; &gt;</description><subject>Electrodes</subject><subject>Electron, positron and ion microscopes, electron diffractometers and related techniques</subject><subject>Exact sciences and technology</subject><subject>Instruments</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Microscopy</subject><subject>Motion control</subject><subject>Physics</subject><subject>Piezoelectric actuators</subject><subject>Piezoelectric films</subject><subject>Plasma measurements</subject><subject>Surface topography</subject><subject>Tunneling</subject><subject>Zinc oxide</subject><issn>0741-3106</issn><issn>1558-0563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><recordid>eNqF0E1LAzEQBuAgCtYqePXWg4iXrZnmc49S_IKKFz2HbDKRyDZbk-3Bf2_XLb16ykAe3mFeQi6BzgFofSfEnDMAdkQmIISuqJDsmEyo4lAxoPKUnJXyRSlwrviEVK_R5S7YJkdne_Sz4mxKMX3O-m1K2A7TeiDFdRs8JyfBtgUv9u-UfDw-vC-fq9Xb08vyflU5Tmlfeee8ht1K0XiGPmgllQxUKbS1YNAAwxqVrzkgeq65gtCg0zUERq2wnE3JzZi7yd33Fktv1rE4bFubsNsWs9BMCliI_6FYKOB6gLcjHE4pGYPZ5Li2-ccANUNxRgjzV9yOXu8z7a6MNmSbXCwHL6WqmRrY1cgiIh5-x4hfBWJz8g</recordid><startdate>19891101</startdate><enddate>19891101</enddate><creator>Akamine, S.</creator><creator>Albrecht, T.R.</creator><creator>Zdeblick, M.J.</creator><creator>Quate, C.F.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7SP</scope></search><sort><creationdate>19891101</creationdate><title>Microfabricated scanning tunneling microscope</title><author>Akamine, S. ; Albrecht, T.R. ; Zdeblick, M.J. ; Quate, C.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-dccd810745bd3edf87676f077ea9531b13e9e7d941eed48471fbec891f30a5a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>Electrodes</topic><topic>Electron, positron and ion microscopes, electron diffractometers and related techniques</topic><topic>Exact sciences and technology</topic><topic>Instruments</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Microscopy</topic><topic>Motion control</topic><topic>Physics</topic><topic>Piezoelectric actuators</topic><topic>Piezoelectric films</topic><topic>Plasma measurements</topic><topic>Surface topography</topic><topic>Tunneling</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akamine, S.</creatorcontrib><creatorcontrib>Albrecht, T.R.</creatorcontrib><creatorcontrib>Zdeblick, M.J.</creatorcontrib><creatorcontrib>Quate, C.F.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics &amp; Communications Abstracts</collection><jtitle>IEEE electron device letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akamine, S.</au><au>Albrecht, T.R.</au><au>Zdeblick, M.J.</au><au>Quate, C.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microfabricated scanning tunneling microscope</atitle><jtitle>IEEE electron device letters</jtitle><stitle>LED</stitle><date>1989-11-01</date><risdate>1989</risdate><volume>10</volume><issue>11</issue><spage>490</spage><epage>492</epage><pages>490-492</pages><issn>0741-3106</issn><eissn>1558-0563</eissn><coden>EDLEDZ</coden><abstract>A scanning tunneling microscope (STM) with dimensions 1000 mu m*200 mu m*8 mu m constructed by planar microfabrication techniques is discussed. The device incorporates a piezoelectric actuator capable of three-dimensional motion for scanning and control of the tunneling gap spacing. Operation of the device has been successfully demonstrated by imaging the surface of a graphite sample with atomic resolution.&lt; &gt;</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/55.43113</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0741-3106
ispartof IEEE electron device letters, 1989-11, Vol.10 (11), p.490-492
issn 0741-3106
1558-0563
language eng
recordid cdi_pascalfrancis_primary_6679373
source IEEE Xplore (Online service)
subjects Electrodes
Electron, positron and ion microscopes, electron diffractometers and related techniques
Exact sciences and technology
Instruments
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
Microscopy
Motion control
Physics
Piezoelectric actuators
Piezoelectric films
Plasma measurements
Surface topography
Tunneling
Zinc oxide
title Microfabricated scanning tunneling microscope
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T20%3A43%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microfabricated%20scanning%20tunneling%20microscope&rft.jtitle=IEEE%20electron%20device%20letters&rft.au=Akamine,%20S.&rft.date=1989-11-01&rft.volume=10&rft.issue=11&rft.spage=490&rft.epage=492&rft.pages=490-492&rft.issn=0741-3106&rft.eissn=1558-0563&rft.coden=EDLEDZ&rft_id=info:doi/10.1109/55.43113&rft_dat=%3Cproquest_pasca%3E28365125%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c400t-dccd810745bd3edf87676f077ea9531b13e9e7d941eed48471fbec891f30a5a43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=25271485&rft_id=info:pmid/&rft_ieee_id=43113&rfr_iscdi=true