Loading…

Millimeter-wave attenuation and delay rates due to fog/cloud conditions

Propagation properties of suspended water and ice particles which make up atmospheric haze, fog, and clouds were examined for microwave and millimeter-wave frequencies. Rates of attenuation alpha (dB/km) and delay tau (ps/km) are derived from a complex refractivity based on the Rayleigh absorption a...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on antennas and propagation 1989-12, Vol.37 (12), p.1617-1612
Main Authors: Liebe, H.J., Manabe, T., Hufford, G.A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Propagation properties of suspended water and ice particles which make up atmospheric haze, fog, and clouds were examined for microwave and millimeter-wave frequencies. Rates of attenuation alpha (dB/km) and delay tau (ps/km) are derived from a complex refractivity based on the Rayleigh absorption approximation of Mie's scattering theory. Key variables are particle mass content and permittivity, which depends on frequency and temperature both for liquid and ice states. Water droplet attenuation can be estimated within a restricted (10+or-10 degrees C) temperature range using a simple two-coefficient approximation. Experimental data on signal loss and phase delay caused by fog at four frequencies (50, 82, 141, and 246 GHz) over a 0.81-km line-of-sight path were found to be consistent with the model.< >
ISSN:0018-926X
1558-2221
DOI:10.1109/8.45106