Loading…
Depression of nonlinearity in decaying isotropic turbulence
Simulations of decaying isotropic Navier–Stokes turbulence exhibit depression of the normalized mean‐square nonlinear term to 57% of the value for a Gaussianly distributed velocity field with the same instantaneous velocity spectrum. Similar depression is found for dynamical models with random coupl...
Saved in:
Published in: | The Physics of fluids (1958) 1988-09, Vol.31 (9), p.2395-2397 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c313t-e62f17c7f17db6b6d4d219221aa0b633f17f8dd5c49d21609be61b04600113623 |
---|---|
cites | cdi_FETCH-LOGICAL-c313t-e62f17c7f17db6b6d4d219221aa0b633f17f8dd5c49d21609be61b04600113623 |
container_end_page | 2397 |
container_issue | 9 |
container_start_page | 2395 |
container_title | The Physics of fluids (1958) |
container_volume | 31 |
creator | Kraichnan, Robert H. Panda, Raj |
description | Simulations of decaying isotropic Navier–Stokes turbulence exhibit depression of the normalized mean‐square nonlinear term to 57% of the value for a Gaussianly distributed velocity field with the same instantaneous velocity spectrum. Similar depression is found for dynamical models with random coupling coefficients (modified Betchov models). This suggests that the depression is dynamically generic rather than specifically driven by alignment of velocity and vorticity. |
doi_str_mv | 10.1063/1.866591 |
format | article |
fullrecord | <record><control><sourceid>scitation_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_7024263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1063_1_866591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-e62f17c7f17db6b6d4d219221aa0b633f17f8dd5c49d21609be61b04600113623</originalsourceid><addsrcrecordid>eNp1j01LxDAQhoMoWKvgT8jBgx66ZpLudIMn2fULFrzouaRpIpGalKR76L83UvHmZQbmfXiHh5BLYCtgKG5htUFcSzgiBQcUVS3l5pgUjAmoJDRwSs5S-mSM11CLgtztzBhNSi54Giz1wQ_OGxXdNFPnaW-0mp3_oC6FKYbRaTodYncYjNfmnJxYNSRz8btL8v748LZ9rvavTy_b-32lBYipMsgtNLrJo--ww77uOUjOQSnWoRD5bjd9v9a1zAEy2RmEjtXIGIBALkpyvfTqGFKKxrZjdF8qzi2w9ke6hXaRzujVgo4qaTXYqLx26Y9vsjbPL0tys2BJu0lNWf7_ym8lSWKX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Depression of nonlinearity in decaying isotropic turbulence</title><source>Alma/SFX Local Collection</source><creator>Kraichnan, Robert H. ; Panda, Raj</creator><creatorcontrib>Kraichnan, Robert H. ; Panda, Raj</creatorcontrib><description>Simulations of decaying isotropic Navier–Stokes turbulence exhibit depression of the normalized mean‐square nonlinear term to 57% of the value for a Gaussianly distributed velocity field with the same instantaneous velocity spectrum. Similar depression is found for dynamical models with random coupling coefficients (modified Betchov models). This suggests that the depression is dynamically generic rather than specifically driven by alignment of velocity and vorticity.</description><identifier>ISSN: 0031-9171</identifier><identifier>EISSN: 2163-4998</identifier><identifier>DOI: 10.1063/1.866591</identifier><identifier>CODEN: PFLDAS</identifier><language>eng</language><publisher>Woodbury, NY: American Institute of Physics</publisher><subject>Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Physics ; Turbulent flows, convection, and heat transfer</subject><ispartof>The Physics of fluids (1958), 1988-09, Vol.31 (9), p.2395-2397</ispartof><rights>American Institute of Physics</rights><rights>1989 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-e62f17c7f17db6b6d4d219221aa0b633f17f8dd5c49d21609be61b04600113623</citedby><cites>FETCH-LOGICAL-c313t-e62f17c7f17db6b6d4d219221aa0b633f17f8dd5c49d21609be61b04600113623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7024263$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kraichnan, Robert H.</creatorcontrib><creatorcontrib>Panda, Raj</creatorcontrib><title>Depression of nonlinearity in decaying isotropic turbulence</title><title>The Physics of fluids (1958)</title><description>Simulations of decaying isotropic Navier–Stokes turbulence exhibit depression of the normalized mean‐square nonlinear term to 57% of the value for a Gaussianly distributed velocity field with the same instantaneous velocity spectrum. Similar depression is found for dynamical models with random coupling coefficients (modified Betchov models). This suggests that the depression is dynamically generic rather than specifically driven by alignment of velocity and vorticity.</description><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Turbulent flows, convection, and heat transfer</subject><issn>0031-9171</issn><issn>2163-4998</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><recordid>eNp1j01LxDAQhoMoWKvgT8jBgx66ZpLudIMn2fULFrzouaRpIpGalKR76L83UvHmZQbmfXiHh5BLYCtgKG5htUFcSzgiBQcUVS3l5pgUjAmoJDRwSs5S-mSM11CLgtztzBhNSi54Giz1wQ_OGxXdNFPnaW-0mp3_oC6FKYbRaTodYncYjNfmnJxYNSRz8btL8v748LZ9rvavTy_b-32lBYipMsgtNLrJo--ww77uOUjOQSnWoRD5bjd9v9a1zAEy2RmEjtXIGIBALkpyvfTqGFKKxrZjdF8qzi2w9ke6hXaRzujVgo4qaTXYqLx26Y9vsjbPL0tys2BJu0lNWf7_ym8lSWKX</recordid><startdate>19880901</startdate><enddate>19880901</enddate><creator>Kraichnan, Robert H.</creator><creator>Panda, Raj</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19880901</creationdate><title>Depression of nonlinearity in decaying isotropic turbulence</title><author>Kraichnan, Robert H. ; Panda, Raj</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-e62f17c7f17db6b6d4d219221aa0b633f17f8dd5c49d21609be61b04600113623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Turbulent flows, convection, and heat transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kraichnan, Robert H.</creatorcontrib><creatorcontrib>Panda, Raj</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>The Physics of fluids (1958)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kraichnan, Robert H.</au><au>Panda, Raj</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Depression of nonlinearity in decaying isotropic turbulence</atitle><jtitle>The Physics of fluids (1958)</jtitle><date>1988-09-01</date><risdate>1988</risdate><volume>31</volume><issue>9</issue><spage>2395</spage><epage>2397</epage><pages>2395-2397</pages><issn>0031-9171</issn><eissn>2163-4998</eissn><coden>PFLDAS</coden><abstract>Simulations of decaying isotropic Navier–Stokes turbulence exhibit depression of the normalized mean‐square nonlinear term to 57% of the value for a Gaussianly distributed velocity field with the same instantaneous velocity spectrum. Similar depression is found for dynamical models with random coupling coefficients (modified Betchov models). This suggests that the depression is dynamically generic rather than specifically driven by alignment of velocity and vorticity.</abstract><cop>Woodbury, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.866591</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9171 |
ispartof | The Physics of fluids (1958), 1988-09, Vol.31 (9), p.2395-2397 |
issn | 0031-9171 2163-4998 |
language | eng |
recordid | cdi_pascalfrancis_primary_7024263 |
source | Alma/SFX Local Collection |
subjects | Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) Physics Turbulent flows, convection, and heat transfer |
title | Depression of nonlinearity in decaying isotropic turbulence |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A32%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Depression%20of%20nonlinearity%20in%20decaying%20isotropic%20turbulence&rft.jtitle=The%20Physics%20of%20fluids%20(1958)&rft.au=Kraichnan,%20Robert%20H.&rft.date=1988-09-01&rft.volume=31&rft.issue=9&rft.spage=2395&rft.epage=2397&rft.pages=2395-2397&rft.issn=0031-9171&rft.eissn=2163-4998&rft.coden=PFLDAS&rft_id=info:doi/10.1063/1.866591&rft_dat=%3Cscitation_pasca%3Escitation_primary_10_1063_1_866591%3C/scitation_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c313t-e62f17c7f17db6b6d4d219221aa0b633f17f8dd5c49d21609be61b04600113623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |