Loading…

Depression of nonlinearity in decaying isotropic turbulence

Simulations of decaying isotropic Navier–Stokes turbulence exhibit depression of the normalized mean‐square nonlinear term to 57% of the value for a Gaussianly distributed velocity field with the same instantaneous velocity spectrum. Similar depression is found for dynamical models with random coupl...

Full description

Saved in:
Bibliographic Details
Published in:The Physics of fluids (1958) 1988-09, Vol.31 (9), p.2395-2397
Main Authors: Kraichnan, Robert H., Panda, Raj
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c313t-e62f17c7f17db6b6d4d219221aa0b633f17f8dd5c49d21609be61b04600113623
cites cdi_FETCH-LOGICAL-c313t-e62f17c7f17db6b6d4d219221aa0b633f17f8dd5c49d21609be61b04600113623
container_end_page 2397
container_issue 9
container_start_page 2395
container_title The Physics of fluids (1958)
container_volume 31
creator Kraichnan, Robert H.
Panda, Raj
description Simulations of decaying isotropic Navier–Stokes turbulence exhibit depression of the normalized mean‐square nonlinear term to 57% of the value for a Gaussianly distributed velocity field with the same instantaneous velocity spectrum. Similar depression is found for dynamical models with random coupling coefficients (modified Betchov models). This suggests that the depression is dynamically generic rather than specifically driven by alignment of velocity and vorticity.
doi_str_mv 10.1063/1.866591
format article
fullrecord <record><control><sourceid>scitation_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_7024263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1063_1_866591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-e62f17c7f17db6b6d4d219221aa0b633f17f8dd5c49d21609be61b04600113623</originalsourceid><addsrcrecordid>eNp1j01LxDAQhoMoWKvgT8jBgx66ZpLudIMn2fULFrzouaRpIpGalKR76L83UvHmZQbmfXiHh5BLYCtgKG5htUFcSzgiBQcUVS3l5pgUjAmoJDRwSs5S-mSM11CLgtztzBhNSi54Giz1wQ_OGxXdNFPnaW-0mp3_oC6FKYbRaTodYncYjNfmnJxYNSRz8btL8v748LZ9rvavTy_b-32lBYipMsgtNLrJo--ww77uOUjOQSnWoRD5bjd9v9a1zAEy2RmEjtXIGIBALkpyvfTqGFKKxrZjdF8qzi2w9ke6hXaRzujVgo4qaTXYqLx26Y9vsjbPL0tys2BJu0lNWf7_ym8lSWKX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Depression of nonlinearity in decaying isotropic turbulence</title><source>Alma/SFX Local Collection</source><creator>Kraichnan, Robert H. ; Panda, Raj</creator><creatorcontrib>Kraichnan, Robert H. ; Panda, Raj</creatorcontrib><description>Simulations of decaying isotropic Navier–Stokes turbulence exhibit depression of the normalized mean‐square nonlinear term to 57% of the value for a Gaussianly distributed velocity field with the same instantaneous velocity spectrum. Similar depression is found for dynamical models with random coupling coefficients (modified Betchov models). This suggests that the depression is dynamically generic rather than specifically driven by alignment of velocity and vorticity.</description><identifier>ISSN: 0031-9171</identifier><identifier>EISSN: 2163-4998</identifier><identifier>DOI: 10.1063/1.866591</identifier><identifier>CODEN: PFLDAS</identifier><language>eng</language><publisher>Woodbury, NY: American Institute of Physics</publisher><subject>Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Physics ; Turbulent flows, convection, and heat transfer</subject><ispartof>The Physics of fluids (1958), 1988-09, Vol.31 (9), p.2395-2397</ispartof><rights>American Institute of Physics</rights><rights>1989 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-e62f17c7f17db6b6d4d219221aa0b633f17f8dd5c49d21609be61b04600113623</citedby><cites>FETCH-LOGICAL-c313t-e62f17c7f17db6b6d4d219221aa0b633f17f8dd5c49d21609be61b04600113623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=7024263$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kraichnan, Robert H.</creatorcontrib><creatorcontrib>Panda, Raj</creatorcontrib><title>Depression of nonlinearity in decaying isotropic turbulence</title><title>The Physics of fluids (1958)</title><description>Simulations of decaying isotropic Navier–Stokes turbulence exhibit depression of the normalized mean‐square nonlinear term to 57% of the value for a Gaussianly distributed velocity field with the same instantaneous velocity spectrum. Similar depression is found for dynamical models with random coupling coefficients (modified Betchov models). This suggests that the depression is dynamically generic rather than specifically driven by alignment of velocity and vorticity.</description><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Turbulent flows, convection, and heat transfer</subject><issn>0031-9171</issn><issn>2163-4998</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><recordid>eNp1j01LxDAQhoMoWKvgT8jBgx66ZpLudIMn2fULFrzouaRpIpGalKR76L83UvHmZQbmfXiHh5BLYCtgKG5htUFcSzgiBQcUVS3l5pgUjAmoJDRwSs5S-mSM11CLgtztzBhNSi54Giz1wQ_OGxXdNFPnaW-0mp3_oC6FKYbRaTodYncYjNfmnJxYNSRz8btL8v748LZ9rvavTy_b-32lBYipMsgtNLrJo--ww77uOUjOQSnWoRD5bjd9v9a1zAEy2RmEjtXIGIBALkpyvfTqGFKKxrZjdF8qzi2w9ke6hXaRzujVgo4qaTXYqLx26Y9vsjbPL0tys2BJu0lNWf7_ym8lSWKX</recordid><startdate>19880901</startdate><enddate>19880901</enddate><creator>Kraichnan, Robert H.</creator><creator>Panda, Raj</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19880901</creationdate><title>Depression of nonlinearity in decaying isotropic turbulence</title><author>Kraichnan, Robert H. ; Panda, Raj</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-e62f17c7f17db6b6d4d219221aa0b633f17f8dd5c49d21609be61b04600113623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Turbulent flows, convection, and heat transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kraichnan, Robert H.</creatorcontrib><creatorcontrib>Panda, Raj</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>The Physics of fluids (1958)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kraichnan, Robert H.</au><au>Panda, Raj</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Depression of nonlinearity in decaying isotropic turbulence</atitle><jtitle>The Physics of fluids (1958)</jtitle><date>1988-09-01</date><risdate>1988</risdate><volume>31</volume><issue>9</issue><spage>2395</spage><epage>2397</epage><pages>2395-2397</pages><issn>0031-9171</issn><eissn>2163-4998</eissn><coden>PFLDAS</coden><abstract>Simulations of decaying isotropic Navier–Stokes turbulence exhibit depression of the normalized mean‐square nonlinear term to 57% of the value for a Gaussianly distributed velocity field with the same instantaneous velocity spectrum. Similar depression is found for dynamical models with random coupling coefficients (modified Betchov models). This suggests that the depression is dynamically generic rather than specifically driven by alignment of velocity and vorticity.</abstract><cop>Woodbury, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.866591</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9171
ispartof The Physics of fluids (1958), 1988-09, Vol.31 (9), p.2395-2397
issn 0031-9171
2163-4998
language eng
recordid cdi_pascalfrancis_primary_7024263
source Alma/SFX Local Collection
subjects Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Physics
Turbulent flows, convection, and heat transfer
title Depression of nonlinearity in decaying isotropic turbulence
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A32%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Depression%20of%20nonlinearity%20in%20decaying%20isotropic%20turbulence&rft.jtitle=The%20Physics%20of%20fluids%20(1958)&rft.au=Kraichnan,%20Robert%20H.&rft.date=1988-09-01&rft.volume=31&rft.issue=9&rft.spage=2395&rft.epage=2397&rft.pages=2395-2397&rft.issn=0031-9171&rft.eissn=2163-4998&rft.coden=PFLDAS&rft_id=info:doi/10.1063/1.866591&rft_dat=%3Cscitation_pasca%3Escitation_primary_10_1063_1_866591%3C/scitation_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c313t-e62f17c7f17db6b6d4d219221aa0b633f17f8dd5c49d21609be61b04600113623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true