Loading…
Comments on approximating discrete probability distributions with dependence trees
C.K. Chow and C.N. Liu (1968) introduced the notion of three dependence to approximate a kth-order probability distribution. More recently, A.K.C. Wong and C.C. Wang (1977) proposed a different product approximation. The present authors show that the tree dependence approximation suggested by Chow a...
Saved in:
Published in: | IEEE transactions on pattern analysis and machine intelligence 1989-03, Vol.11 (3), p.333-335 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c272t-ba0078f3a95ca9fc4f6c977658fb427a9b25bd341aa673d05f0ba7eb65212aa23 |
---|---|
cites | cdi_FETCH-LOGICAL-c272t-ba0078f3a95ca9fc4f6c977658fb427a9b25bd341aa673d05f0ba7eb65212aa23 |
container_end_page | 335 |
container_issue | 3 |
container_start_page | 333 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 11 |
creator | Wong, S.K.M. Poon, F.C.S. |
description | C.K. Chow and C.N. Liu (1968) introduced the notion of three dependence to approximate a kth-order probability distribution. More recently, A.K.C. Wong and C.C. Wang (1977) proposed a different product approximation. The present authors show that the tree dependence approximation suggested by Chow and Liu can be derived by minimizing an upper bound of the Bayes error rate under certain assumptions. They also show that the method proposed by Wong and Wang does not necessarily lead to fewer misclassifications, because it is a special case of such a minimization procedure.< > |
doi_str_mv | 10.1109/34.21803 |
format | article |
fullrecord | <record><control><sourceid>pascalfrancis_cross</sourceid><recordid>TN_cdi_pascalfrancis_primary_7277097</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>21803</ieee_id><sourcerecordid>7277097</sourcerecordid><originalsourceid>FETCH-LOGICAL-c272t-ba0078f3a95ca9fc4f6c977658fb427a9b25bd341aa673d05f0ba7eb65212aa23</originalsourceid><addsrcrecordid>eNo9kE1LxDAYhIMouK6CV289ePDSNR9N0xxlcVVYEETP5U36RiO7aUkiuv_erpU9Dcw8DMMQcsnogjGqb0W14Kyh4ojMmBa6FFLoYzKjrOZl0_DmlJyl9EkpqyQVM_Ky7LdbDDkVfShgGGL_47eQfXgvOp9sxIzFaBowfuPzbm_m6M1X9n1IxbfPH0WHA4YOg8UiR8R0Tk4cbBJe_OucvK3uX5eP5fr54Wl5ty4tVzyXBihVjROgpQXtbOVqq5WqZeNMxRVow6XpRMUAaiU6Kh01oNDUkjMOwMWc3Ey9NvYpRXTtEMftcdcy2u6_aEXV_n0xotcTOkCysHERgvXpwCuuFNVqxK4mzCPiIZ0qfgGqSmfG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Comments on approximating discrete probability distributions with dependence trees</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Wong, S.K.M. ; Poon, F.C.S.</creator><creatorcontrib>Wong, S.K.M. ; Poon, F.C.S.</creatorcontrib><description>C.K. Chow and C.N. Liu (1968) introduced the notion of three dependence to approximate a kth-order probability distribution. More recently, A.K.C. Wong and C.C. Wang (1977) proposed a different product approximation. The present authors show that the tree dependence approximation suggested by Chow and Liu can be derived by minimizing an upper bound of the Bayes error rate under certain assumptions. They also show that the method proposed by Wong and Wang does not necessarily lead to fewer misclassifications, because it is a special case of such a minimization procedure.< ></description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/34.21803</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>Applied sciences ; Artificial intelligence ; Classification tree analysis ; Computer science; control theory; systems ; Entropy ; Error analysis ; Exact sciences and technology ; Information systems ; Information theory ; Intelligent systems ; Learning and adaptive systems ; Mutual information ; Pattern recognition ; Probability distribution ; Upper bound</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 1989-03, Vol.11 (3), p.333-335</ispartof><rights>1989 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c272t-ba0078f3a95ca9fc4f6c977658fb427a9b25bd341aa673d05f0ba7eb65212aa23</citedby><cites>FETCH-LOGICAL-c272t-ba0078f3a95ca9fc4f6c977658fb427a9b25bd341aa673d05f0ba7eb65212aa23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/21803$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27900,27901,54770</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7277097$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wong, S.K.M.</creatorcontrib><creatorcontrib>Poon, F.C.S.</creatorcontrib><title>Comments on approximating discrete probability distributions with dependence trees</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><description>C.K. Chow and C.N. Liu (1968) introduced the notion of three dependence to approximate a kth-order probability distribution. More recently, A.K.C. Wong and C.C. Wang (1977) proposed a different product approximation. The present authors show that the tree dependence approximation suggested by Chow and Liu can be derived by minimizing an upper bound of the Bayes error rate under certain assumptions. They also show that the method proposed by Wong and Wang does not necessarily lead to fewer misclassifications, because it is a special case of such a minimization procedure.< ></description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Classification tree analysis</subject><subject>Computer science; control theory; systems</subject><subject>Entropy</subject><subject>Error analysis</subject><subject>Exact sciences and technology</subject><subject>Information systems</subject><subject>Information theory</subject><subject>Intelligent systems</subject><subject>Learning and adaptive systems</subject><subject>Mutual information</subject><subject>Pattern recognition</subject><subject>Probability distribution</subject><subject>Upper bound</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LxDAYhIMouK6CV289ePDSNR9N0xxlcVVYEETP5U36RiO7aUkiuv_erpU9Dcw8DMMQcsnogjGqb0W14Kyh4ojMmBa6FFLoYzKjrOZl0_DmlJyl9EkpqyQVM_Ky7LdbDDkVfShgGGL_47eQfXgvOp9sxIzFaBowfuPzbm_m6M1X9n1IxbfPH0WHA4YOg8UiR8R0Tk4cbBJe_OucvK3uX5eP5fr54Wl5ty4tVzyXBihVjROgpQXtbOVqq5WqZeNMxRVow6XpRMUAaiU6Kh01oNDUkjMOwMWc3Ey9NvYpRXTtEMftcdcy2u6_aEXV_n0xotcTOkCysHERgvXpwCuuFNVqxK4mzCPiIZ0qfgGqSmfG</recordid><startdate>19890301</startdate><enddate>19890301</enddate><creator>Wong, S.K.M.</creator><creator>Poon, F.C.S.</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19890301</creationdate><title>Comments on approximating discrete probability distributions with dependence trees</title><author>Wong, S.K.M. ; Poon, F.C.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c272t-ba0078f3a95ca9fc4f6c977658fb427a9b25bd341aa673d05f0ba7eb65212aa23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Classification tree analysis</topic><topic>Computer science; control theory; systems</topic><topic>Entropy</topic><topic>Error analysis</topic><topic>Exact sciences and technology</topic><topic>Information systems</topic><topic>Information theory</topic><topic>Intelligent systems</topic><topic>Learning and adaptive systems</topic><topic>Mutual information</topic><topic>Pattern recognition</topic><topic>Probability distribution</topic><topic>Upper bound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wong, S.K.M.</creatorcontrib><creatorcontrib>Poon, F.C.S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wong, S.K.M.</au><au>Poon, F.C.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comments on approximating discrete probability distributions with dependence trees</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><date>1989-03-01</date><risdate>1989</risdate><volume>11</volume><issue>3</issue><spage>333</spage><epage>335</epage><pages>333-335</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>C.K. Chow and C.N. Liu (1968) introduced the notion of three dependence to approximate a kth-order probability distribution. More recently, A.K.C. Wong and C.C. Wang (1977) proposed a different product approximation. The present authors show that the tree dependence approximation suggested by Chow and Liu can be derived by minimizing an upper bound of the Bayes error rate under certain assumptions. They also show that the method proposed by Wong and Wang does not necessarily lead to fewer misclassifications, because it is a special case of such a minimization procedure.< ></abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><doi>10.1109/34.21803</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 1989-03, Vol.11 (3), p.333-335 |
issn | 0162-8828 1939-3539 2160-9292 |
language | eng |
recordid | cdi_pascalfrancis_primary_7277097 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Applied sciences Artificial intelligence Classification tree analysis Computer science control theory systems Entropy Error analysis Exact sciences and technology Information systems Information theory Intelligent systems Learning and adaptive systems Mutual information Pattern recognition Probability distribution Upper bound |
title | Comments on approximating discrete probability distributions with dependence trees |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T17%3A40%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comments%20on%20approximating%20discrete%20probability%20distributions%20with%20dependence%20trees&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Wong,%20S.K.M.&rft.date=1989-03-01&rft.volume=11&rft.issue=3&rft.spage=333&rft.epage=335&rft.pages=333-335&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/34.21803&rft_dat=%3Cpascalfrancis_cross%3E7277097%3C/pascalfrancis_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c272t-ba0078f3a95ca9fc4f6c977658fb427a9b25bd341aa673d05f0ba7eb65212aa23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=21803&rfr_iscdi=true |