Loading…

Comments on approximating discrete probability distributions with dependence trees

C.K. Chow and C.N. Liu (1968) introduced the notion of three dependence to approximate a kth-order probability distribution. More recently, A.K.C. Wong and C.C. Wang (1977) proposed a different product approximation. The present authors show that the tree dependence approximation suggested by Chow a...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on pattern analysis and machine intelligence 1989-03, Vol.11 (3), p.333-335
Main Authors: Wong, S.K.M., Poon, F.C.S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c272t-ba0078f3a95ca9fc4f6c977658fb427a9b25bd341aa673d05f0ba7eb65212aa23
cites cdi_FETCH-LOGICAL-c272t-ba0078f3a95ca9fc4f6c977658fb427a9b25bd341aa673d05f0ba7eb65212aa23
container_end_page 335
container_issue 3
container_start_page 333
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 11
creator Wong, S.K.M.
Poon, F.C.S.
description C.K. Chow and C.N. Liu (1968) introduced the notion of three dependence to approximate a kth-order probability distribution. More recently, A.K.C. Wong and C.C. Wang (1977) proposed a different product approximation. The present authors show that the tree dependence approximation suggested by Chow and Liu can be derived by minimizing an upper bound of the Bayes error rate under certain assumptions. They also show that the method proposed by Wong and Wang does not necessarily lead to fewer misclassifications, because it is a special case of such a minimization procedure.< >
doi_str_mv 10.1109/34.21803
format article
fullrecord <record><control><sourceid>pascalfrancis_cross</sourceid><recordid>TN_cdi_pascalfrancis_primary_7277097</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>21803</ieee_id><sourcerecordid>7277097</sourcerecordid><originalsourceid>FETCH-LOGICAL-c272t-ba0078f3a95ca9fc4f6c977658fb427a9b25bd341aa673d05f0ba7eb65212aa23</originalsourceid><addsrcrecordid>eNo9kE1LxDAYhIMouK6CV289ePDSNR9N0xxlcVVYEETP5U36RiO7aUkiuv_erpU9Dcw8DMMQcsnogjGqb0W14Kyh4ojMmBa6FFLoYzKjrOZl0_DmlJyl9EkpqyQVM_Ky7LdbDDkVfShgGGL_47eQfXgvOp9sxIzFaBowfuPzbm_m6M1X9n1IxbfPH0WHA4YOg8UiR8R0Tk4cbBJe_OucvK3uX5eP5fr54Wl5ty4tVzyXBihVjROgpQXtbOVqq5WqZeNMxRVow6XpRMUAaiU6Kh01oNDUkjMOwMWc3Ey9NvYpRXTtEMftcdcy2u6_aEXV_n0xotcTOkCysHERgvXpwCuuFNVqxK4mzCPiIZ0qfgGqSmfG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Comments on approximating discrete probability distributions with dependence trees</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Wong, S.K.M. ; Poon, F.C.S.</creator><creatorcontrib>Wong, S.K.M. ; Poon, F.C.S.</creatorcontrib><description>C.K. Chow and C.N. Liu (1968) introduced the notion of three dependence to approximate a kth-order probability distribution. More recently, A.K.C. Wong and C.C. Wang (1977) proposed a different product approximation. The present authors show that the tree dependence approximation suggested by Chow and Liu can be derived by minimizing an upper bound of the Bayes error rate under certain assumptions. They also show that the method proposed by Wong and Wang does not necessarily lead to fewer misclassifications, because it is a special case of such a minimization procedure.&lt; &gt;</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/34.21803</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>Applied sciences ; Artificial intelligence ; Classification tree analysis ; Computer science; control theory; systems ; Entropy ; Error analysis ; Exact sciences and technology ; Information systems ; Information theory ; Intelligent systems ; Learning and adaptive systems ; Mutual information ; Pattern recognition ; Probability distribution ; Upper bound</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 1989-03, Vol.11 (3), p.333-335</ispartof><rights>1989 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c272t-ba0078f3a95ca9fc4f6c977658fb427a9b25bd341aa673d05f0ba7eb65212aa23</citedby><cites>FETCH-LOGICAL-c272t-ba0078f3a95ca9fc4f6c977658fb427a9b25bd341aa673d05f0ba7eb65212aa23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/21803$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27900,27901,54770</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=7277097$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wong, S.K.M.</creatorcontrib><creatorcontrib>Poon, F.C.S.</creatorcontrib><title>Comments on approximating discrete probability distributions with dependence trees</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><description>C.K. Chow and C.N. Liu (1968) introduced the notion of three dependence to approximate a kth-order probability distribution. More recently, A.K.C. Wong and C.C. Wang (1977) proposed a different product approximation. The present authors show that the tree dependence approximation suggested by Chow and Liu can be derived by minimizing an upper bound of the Bayes error rate under certain assumptions. They also show that the method proposed by Wong and Wang does not necessarily lead to fewer misclassifications, because it is a special case of such a minimization procedure.&lt; &gt;</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Classification tree analysis</subject><subject>Computer science; control theory; systems</subject><subject>Entropy</subject><subject>Error analysis</subject><subject>Exact sciences and technology</subject><subject>Information systems</subject><subject>Information theory</subject><subject>Intelligent systems</subject><subject>Learning and adaptive systems</subject><subject>Mutual information</subject><subject>Pattern recognition</subject><subject>Probability distribution</subject><subject>Upper bound</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LxDAYhIMouK6CV289ePDSNR9N0xxlcVVYEETP5U36RiO7aUkiuv_erpU9Dcw8DMMQcsnogjGqb0W14Kyh4ojMmBa6FFLoYzKjrOZl0_DmlJyl9EkpqyQVM_Ky7LdbDDkVfShgGGL_47eQfXgvOp9sxIzFaBowfuPzbm_m6M1X9n1IxbfPH0WHA4YOg8UiR8R0Tk4cbBJe_OucvK3uX5eP5fr54Wl5ty4tVzyXBihVjROgpQXtbOVqq5WqZeNMxRVow6XpRMUAaiU6Kh01oNDUkjMOwMWc3Ey9NvYpRXTtEMftcdcy2u6_aEXV_n0xotcTOkCysHERgvXpwCuuFNVqxK4mzCPiIZ0qfgGqSmfG</recordid><startdate>19890301</startdate><enddate>19890301</enddate><creator>Wong, S.K.M.</creator><creator>Poon, F.C.S.</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19890301</creationdate><title>Comments on approximating discrete probability distributions with dependence trees</title><author>Wong, S.K.M. ; Poon, F.C.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c272t-ba0078f3a95ca9fc4f6c977658fb427a9b25bd341aa673d05f0ba7eb65212aa23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Classification tree analysis</topic><topic>Computer science; control theory; systems</topic><topic>Entropy</topic><topic>Error analysis</topic><topic>Exact sciences and technology</topic><topic>Information systems</topic><topic>Information theory</topic><topic>Intelligent systems</topic><topic>Learning and adaptive systems</topic><topic>Mutual information</topic><topic>Pattern recognition</topic><topic>Probability distribution</topic><topic>Upper bound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wong, S.K.M.</creatorcontrib><creatorcontrib>Poon, F.C.S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wong, S.K.M.</au><au>Poon, F.C.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comments on approximating discrete probability distributions with dependence trees</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><date>1989-03-01</date><risdate>1989</risdate><volume>11</volume><issue>3</issue><spage>333</spage><epage>335</epage><pages>333-335</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>C.K. Chow and C.N. Liu (1968) introduced the notion of three dependence to approximate a kth-order probability distribution. More recently, A.K.C. Wong and C.C. Wang (1977) proposed a different product approximation. The present authors show that the tree dependence approximation suggested by Chow and Liu can be derived by minimizing an upper bound of the Bayes error rate under certain assumptions. They also show that the method proposed by Wong and Wang does not necessarily lead to fewer misclassifications, because it is a special case of such a minimization procedure.&lt; &gt;</abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><doi>10.1109/34.21803</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 1989-03, Vol.11 (3), p.333-335
issn 0162-8828
1939-3539
2160-9292
language eng
recordid cdi_pascalfrancis_primary_7277097
source IEEE Electronic Library (IEL) Journals
subjects Applied sciences
Artificial intelligence
Classification tree analysis
Computer science
control theory
systems
Entropy
Error analysis
Exact sciences and technology
Information systems
Information theory
Intelligent systems
Learning and adaptive systems
Mutual information
Pattern recognition
Probability distribution
Upper bound
title Comments on approximating discrete probability distributions with dependence trees
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T17%3A40%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comments%20on%20approximating%20discrete%20probability%20distributions%20with%20dependence%20trees&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Wong,%20S.K.M.&rft.date=1989-03-01&rft.volume=11&rft.issue=3&rft.spage=333&rft.epage=335&rft.pages=333-335&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/34.21803&rft_dat=%3Cpascalfrancis_cross%3E7277097%3C/pascalfrancis_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c272t-ba0078f3a95ca9fc4f6c977658fb427a9b25bd341aa673d05f0ba7eb65212aa23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=21803&rfr_iscdi=true