Loading…
Carrier transport in semiconductor detectors of magnetic domains
Carrier transport in Hall-type devices detecting magnetic domains is analyzed in terms of a two-dimensional numerical model, using a finite element scheme. The numerical model allows the calculation of magnetic sensitivity for general device geometries or structures, any homogeneous semiconductor ma...
Saved in:
Published in: | IEEE transactions on electron devices 1987-10, Vol.34 (10), p.2077-2085 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Carrier transport in Hall-type devices detecting magnetic domains is analyzed in terms of a two-dimensional numerical model, using a finite element scheme. The numerical model allows the calculation of magnetic sensitivity for general device geometries or structures, any homogeneous semiconductor material, and arbitrary domain shapes and sizes. We specifically consider three types of commonly used Hall detectors: the conventional Hall plate, the split-electrode Hall device, and the Hall cross. The magnetic sensitivity for these devices is computed for various domain configurations. In particular, the device's output response for moving domains is investigated and appropriate figures of merit are established with respect to spatial resolution. A comparison of the numerical solutions with previously reported experimental results supports the validity of our analysis. |
---|---|
ISSN: | 0018-9383 1557-9646 |
DOI: | 10.1109/T-ED.1987.23201 |