Loading…

The Effect of Back Corona in a Laboratory Scale Electrostatic Precipitator

The results are presented of a study on the influence of back corona on the performance of a laboratory scale wire-plate precipitator, with the plate to plate spacing as a parameter. Back corona is introduced into the precipitator by increasing the ash resistivity, attained by increasing the ash-lad...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industry applications 1985-07, Vol.IA-21 (4), p.935-938
Main Authors: Patel, Sushil N., Rahmlow, Thomas D., Kjendal, Roy A., Meehan, John J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The results are presented of a study on the influence of back corona on the performance of a laboratory scale wire-plate precipitator, with the plate to plate spacing as a parameter. Back corona is introduced into the precipitator by increasing the ash resistivity, attained by increasing the ash-laden gas temperature from 21 ° C (a no back discharge condition) to 104 ° C. Performance is evaluated in terms of the Deutsch migration velocity and using the particle concentration measurements made at the inlet and outlet of the precipitator with an optical counter. Results for the four different plate spacings with no back discharge show a time-independent migration velocity and current density, with higher migration velocities for the wider plate spacings. Results with back discharge show an initially rapid decrease in migration velocity with time, accompanied by a rapid increase in the current density, with greater decreases for the wider plate spacings. The behavior of the precipitator with and without back discharge is consistent with the space charge model interpretation of the wide-plate spacing precipitator.
ISSN:0093-9994
1939-9367
DOI:10.1109/TIA.1985.349563