Loading…
The Geometry of Constrained Mixture Experiments
In mixture experiments, the proportions of the components are often constrained by upper and lower bounds. The resulting experimental region is usually an irregular polyhedron. The experimental region, however, can be obtained from a regular simplex by truncation. This technique allows derivation of...
Saved in:
Published in: | Technometrics 1986-05, Vol.28 (2), p.95-102 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c284t-fb791babee798fb65129e6c758b332074051255d415c4d212ae804f5ae9975203 |
---|---|
cites | cdi_FETCH-LOGICAL-c284t-fb791babee798fb65129e6c758b332074051255d415c4d212ae804f5ae9975203 |
container_end_page | 102 |
container_issue | 2 |
container_start_page | 95 |
container_title | Technometrics |
container_volume | 28 |
creator | Crosier, Ronald B. |
description | In mixture experiments, the proportions of the components are often constrained by upper and lower bounds. The resulting experimental region is usually an irregular polyhedron. The experimental region, however, can be obtained from a regular simplex by truncation. This technique allows derivation of formulas for the number of boundaries, and the volume, of the experimental region. The formulas for the number of boundaries provide guidance for designing mixture experiments. The formula for volume may be used to determine if small changes in the constraints have a small effect on the experimental region. The volume formula is also used, along with the truncation procedure, to calculate center-of-mass centroids. A new algorithm is given for generation of the vertices of mixture regions constrained by upper and lower bounds. |
doi_str_mv | 10.1080/00401706.1986.10488110 |
format | article |
fullrecord | <record><control><sourceid>jstor_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_8774756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>1270445</jstor_id><sourcerecordid>1270445</sourcerecordid><originalsourceid>FETCH-LOGICAL-c284t-fb791babee798fb65129e6c758b332074051255d415c4d212ae804f5ae9975203</originalsourceid><addsrcrecordid>eNqFj01Lw0AQhhdRsFb_guTgNe3MfmQ3x1JqFSpe6nnZJLuYkmbLbsTm35tQq968zMDwvC_zEHKPMENQMAfggBKyGeZqGMCVQoQLMkHBZEolZZdkMkLpSF2Tmxh3AMiokhMy377bZG393nahT7xLlr6NXTB1a6vkpT52H8Emq-PBhnpv2y7ekitnmmjvvveUvD2utsundPO6fl4uNmlJFe9SV8gcC1NYK3PlikwgzW1WSqEKxihIDsNFiIqjKHlFkRqrgDthbJ5LQYFNSXbqLYOPMVinD8MHJvQaQY_a-qytR2191h6CD6fgwcTSNC6YtqzjT1pJyaXIfrFd7Hz4W04ZSI1UAudiwBYnrG6dD3vz6UNT6c70jQ_navbPR19U53Vm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Geometry of Constrained Mixture Experiments</title><source>JSTOR</source><creator>Crosier, Ronald B.</creator><creatorcontrib>Crosier, Ronald B.</creatorcontrib><description>In mixture experiments, the proportions of the components are often constrained by upper and lower bounds. The resulting experimental region is usually an irregular polyhedron. The experimental region, however, can be obtained from a regular simplex by truncation. This technique allows derivation of formulas for the number of boundaries, and the volume, of the experimental region. The formulas for the number of boundaries provide guidance for designing mixture experiments. The formula for volume may be used to determine if small changes in the constraints have a small effect on the experimental region. The volume formula is also used, along with the truncation procedure, to calculate center-of-mass centroids. A new algorithm is given for generation of the vertices of mixture regions constrained by upper and lower bounds.</description><identifier>ISSN: 0040-1706</identifier><identifier>EISSN: 1537-2723</identifier><identifier>DOI: 10.1080/00401706.1986.10488110</identifier><identifier>CODEN: TCMTA2</identifier><language>eng</language><publisher>Alexandria, VI: Taylor & Francis Group</publisher><subject>Applications ; Centroids ; Exact sciences and technology ; Experiment design ; Gasoline ; H I regions ; Hyperplanes ; Mathematics ; Polyhedrons ; Probability and statistics ; Pseudocomponents ; Sciences and techniques of general use ; Statistics ; Vertices ; Vertices algorithm</subject><ispartof>Technometrics, 1986-05, Vol.28 (2), p.95-102</ispartof><rights>Copyright Taylor & Francis Group, LLC 1986</rights><rights>Copyright 1986 The American Statistical Association and the American Society for Quality Control</rights><rights>1986 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c284t-fb791babee798fb65129e6c758b332074051255d415c4d212ae804f5ae9975203</citedby><cites>FETCH-LOGICAL-c284t-fb791babee798fb65129e6c758b332074051255d415c4d212ae804f5ae9975203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1270445$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1270445$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,58237,58470</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=8774756$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Crosier, Ronald B.</creatorcontrib><title>The Geometry of Constrained Mixture Experiments</title><title>Technometrics</title><description>In mixture experiments, the proportions of the components are often constrained by upper and lower bounds. The resulting experimental region is usually an irregular polyhedron. The experimental region, however, can be obtained from a regular simplex by truncation. This technique allows derivation of formulas for the number of boundaries, and the volume, of the experimental region. The formulas for the number of boundaries provide guidance for designing mixture experiments. The formula for volume may be used to determine if small changes in the constraints have a small effect on the experimental region. The volume formula is also used, along with the truncation procedure, to calculate center-of-mass centroids. A new algorithm is given for generation of the vertices of mixture regions constrained by upper and lower bounds.</description><subject>Applications</subject><subject>Centroids</subject><subject>Exact sciences and technology</subject><subject>Experiment design</subject><subject>Gasoline</subject><subject>H I regions</subject><subject>Hyperplanes</subject><subject>Mathematics</subject><subject>Polyhedrons</subject><subject>Probability and statistics</subject><subject>Pseudocomponents</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><subject>Vertices</subject><subject>Vertices algorithm</subject><issn>0040-1706</issn><issn>1537-2723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1986</creationdate><recordtype>article</recordtype><recordid>eNqFj01Lw0AQhhdRsFb_guTgNe3MfmQ3x1JqFSpe6nnZJLuYkmbLbsTm35tQq968zMDwvC_zEHKPMENQMAfggBKyGeZqGMCVQoQLMkHBZEolZZdkMkLpSF2Tmxh3AMiokhMy377bZG393nahT7xLlr6NXTB1a6vkpT52H8Emq-PBhnpv2y7ekitnmmjvvveUvD2utsundPO6fl4uNmlJFe9SV8gcC1NYK3PlikwgzW1WSqEKxihIDsNFiIqjKHlFkRqrgDthbJ5LQYFNSXbqLYOPMVinD8MHJvQaQY_a-qytR2191h6CD6fgwcTSNC6YtqzjT1pJyaXIfrFd7Hz4W04ZSI1UAudiwBYnrG6dD3vz6UNT6c70jQ_navbPR19U53Vm</recordid><startdate>19860501</startdate><enddate>19860501</enddate><creator>Crosier, Ronald B.</creator><general>Taylor & Francis Group</general><general>The American Society for Quality Control and The American Statistical Association</general><general>American Society for Quality Control</general><general>American Statistical Association</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19860501</creationdate><title>The Geometry of Constrained Mixture Experiments</title><author>Crosier, Ronald B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c284t-fb791babee798fb65129e6c758b332074051255d415c4d212ae804f5ae9975203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1986</creationdate><topic>Applications</topic><topic>Centroids</topic><topic>Exact sciences and technology</topic><topic>Experiment design</topic><topic>Gasoline</topic><topic>H I regions</topic><topic>Hyperplanes</topic><topic>Mathematics</topic><topic>Polyhedrons</topic><topic>Probability and statistics</topic><topic>Pseudocomponents</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><topic>Vertices</topic><topic>Vertices algorithm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crosier, Ronald B.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Technometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crosier, Ronald B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Geometry of Constrained Mixture Experiments</atitle><jtitle>Technometrics</jtitle><date>1986-05-01</date><risdate>1986</risdate><volume>28</volume><issue>2</issue><spage>95</spage><epage>102</epage><pages>95-102</pages><issn>0040-1706</issn><eissn>1537-2723</eissn><coden>TCMTA2</coden><abstract>In mixture experiments, the proportions of the components are often constrained by upper and lower bounds. The resulting experimental region is usually an irregular polyhedron. The experimental region, however, can be obtained from a regular simplex by truncation. This technique allows derivation of formulas for the number of boundaries, and the volume, of the experimental region. The formulas for the number of boundaries provide guidance for designing mixture experiments. The formula for volume may be used to determine if small changes in the constraints have a small effect on the experimental region. The volume formula is also used, along with the truncation procedure, to calculate center-of-mass centroids. A new algorithm is given for generation of the vertices of mixture regions constrained by upper and lower bounds.</abstract><cop>Alexandria, VI</cop><cop>Milwaukee, WI</cop><pub>Taylor & Francis Group</pub><doi>10.1080/00401706.1986.10488110</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-1706 |
ispartof | Technometrics, 1986-05, Vol.28 (2), p.95-102 |
issn | 0040-1706 1537-2723 |
language | eng |
recordid | cdi_pascalfrancis_primary_8774756 |
source | JSTOR |
subjects | Applications Centroids Exact sciences and technology Experiment design Gasoline H I regions Hyperplanes Mathematics Polyhedrons Probability and statistics Pseudocomponents Sciences and techniques of general use Statistics Vertices Vertices algorithm |
title | The Geometry of Constrained Mixture Experiments |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T23%3A08%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Geometry%20of%20Constrained%20Mixture%20Experiments&rft.jtitle=Technometrics&rft.au=Crosier,%20Ronald%20B.&rft.date=1986-05-01&rft.volume=28&rft.issue=2&rft.spage=95&rft.epage=102&rft.pages=95-102&rft.issn=0040-1706&rft.eissn=1537-2723&rft.coden=TCMTA2&rft_id=info:doi/10.1080/00401706.1986.10488110&rft_dat=%3Cjstor_pasca%3E1270445%3C/jstor_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c284t-fb791babee798fb65129e6c758b332074051255d415c4d212ae804f5ae9975203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=1270445&rfr_iscdi=true |