Loading…

The Geometry of Constrained Mixture Experiments

In mixture experiments, the proportions of the components are often constrained by upper and lower bounds. The resulting experimental region is usually an irregular polyhedron. The experimental region, however, can be obtained from a regular simplex by truncation. This technique allows derivation of...

Full description

Saved in:
Bibliographic Details
Published in:Technometrics 1986-05, Vol.28 (2), p.95-102
Main Author: Crosier, Ronald B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c284t-fb791babee798fb65129e6c758b332074051255d415c4d212ae804f5ae9975203
cites cdi_FETCH-LOGICAL-c284t-fb791babee798fb65129e6c758b332074051255d415c4d212ae804f5ae9975203
container_end_page 102
container_issue 2
container_start_page 95
container_title Technometrics
container_volume 28
creator Crosier, Ronald B.
description In mixture experiments, the proportions of the components are often constrained by upper and lower bounds. The resulting experimental region is usually an irregular polyhedron. The experimental region, however, can be obtained from a regular simplex by truncation. This technique allows derivation of formulas for the number of boundaries, and the volume, of the experimental region. The formulas for the number of boundaries provide guidance for designing mixture experiments. The formula for volume may be used to determine if small changes in the constraints have a small effect on the experimental region. The volume formula is also used, along with the truncation procedure, to calculate center-of-mass centroids. A new algorithm is given for generation of the vertices of mixture regions constrained by upper and lower bounds.
doi_str_mv 10.1080/00401706.1986.10488110
format article
fullrecord <record><control><sourceid>jstor_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_8774756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>1270445</jstor_id><sourcerecordid>1270445</sourcerecordid><originalsourceid>FETCH-LOGICAL-c284t-fb791babee798fb65129e6c758b332074051255d415c4d212ae804f5ae9975203</originalsourceid><addsrcrecordid>eNqFj01Lw0AQhhdRsFb_guTgNe3MfmQ3x1JqFSpe6nnZJLuYkmbLbsTm35tQq968zMDwvC_zEHKPMENQMAfggBKyGeZqGMCVQoQLMkHBZEolZZdkMkLpSF2Tmxh3AMiokhMy377bZG393nahT7xLlr6NXTB1a6vkpT52H8Emq-PBhnpv2y7ekitnmmjvvveUvD2utsundPO6fl4uNmlJFe9SV8gcC1NYK3PlikwgzW1WSqEKxihIDsNFiIqjKHlFkRqrgDthbJ5LQYFNSXbqLYOPMVinD8MHJvQaQY_a-qytR2191h6CD6fgwcTSNC6YtqzjT1pJyaXIfrFd7Hz4W04ZSI1UAudiwBYnrG6dD3vz6UNT6c70jQ_navbPR19U53Vm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Geometry of Constrained Mixture Experiments</title><source>JSTOR</source><creator>Crosier, Ronald B.</creator><creatorcontrib>Crosier, Ronald B.</creatorcontrib><description>In mixture experiments, the proportions of the components are often constrained by upper and lower bounds. The resulting experimental region is usually an irregular polyhedron. The experimental region, however, can be obtained from a regular simplex by truncation. This technique allows derivation of formulas for the number of boundaries, and the volume, of the experimental region. The formulas for the number of boundaries provide guidance for designing mixture experiments. The formula for volume may be used to determine if small changes in the constraints have a small effect on the experimental region. The volume formula is also used, along with the truncation procedure, to calculate center-of-mass centroids. A new algorithm is given for generation of the vertices of mixture regions constrained by upper and lower bounds.</description><identifier>ISSN: 0040-1706</identifier><identifier>EISSN: 1537-2723</identifier><identifier>DOI: 10.1080/00401706.1986.10488110</identifier><identifier>CODEN: TCMTA2</identifier><language>eng</language><publisher>Alexandria, VI: Taylor &amp; Francis Group</publisher><subject>Applications ; Centroids ; Exact sciences and technology ; Experiment design ; Gasoline ; H I regions ; Hyperplanes ; Mathematics ; Polyhedrons ; Probability and statistics ; Pseudocomponents ; Sciences and techniques of general use ; Statistics ; Vertices ; Vertices algorithm</subject><ispartof>Technometrics, 1986-05, Vol.28 (2), p.95-102</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 1986</rights><rights>Copyright 1986 The American Statistical Association and the American Society for Quality Control</rights><rights>1986 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c284t-fb791babee798fb65129e6c758b332074051255d415c4d212ae804f5ae9975203</citedby><cites>FETCH-LOGICAL-c284t-fb791babee798fb65129e6c758b332074051255d415c4d212ae804f5ae9975203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1270445$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1270445$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,58237,58470</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=8774756$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Crosier, Ronald B.</creatorcontrib><title>The Geometry of Constrained Mixture Experiments</title><title>Technometrics</title><description>In mixture experiments, the proportions of the components are often constrained by upper and lower bounds. The resulting experimental region is usually an irregular polyhedron. The experimental region, however, can be obtained from a regular simplex by truncation. This technique allows derivation of formulas for the number of boundaries, and the volume, of the experimental region. The formulas for the number of boundaries provide guidance for designing mixture experiments. The formula for volume may be used to determine if small changes in the constraints have a small effect on the experimental region. The volume formula is also used, along with the truncation procedure, to calculate center-of-mass centroids. A new algorithm is given for generation of the vertices of mixture regions constrained by upper and lower bounds.</description><subject>Applications</subject><subject>Centroids</subject><subject>Exact sciences and technology</subject><subject>Experiment design</subject><subject>Gasoline</subject><subject>H I regions</subject><subject>Hyperplanes</subject><subject>Mathematics</subject><subject>Polyhedrons</subject><subject>Probability and statistics</subject><subject>Pseudocomponents</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><subject>Vertices</subject><subject>Vertices algorithm</subject><issn>0040-1706</issn><issn>1537-2723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1986</creationdate><recordtype>article</recordtype><recordid>eNqFj01Lw0AQhhdRsFb_guTgNe3MfmQ3x1JqFSpe6nnZJLuYkmbLbsTm35tQq968zMDwvC_zEHKPMENQMAfggBKyGeZqGMCVQoQLMkHBZEolZZdkMkLpSF2Tmxh3AMiokhMy377bZG393nahT7xLlr6NXTB1a6vkpT52H8Emq-PBhnpv2y7ekitnmmjvvveUvD2utsundPO6fl4uNmlJFe9SV8gcC1NYK3PlikwgzW1WSqEKxihIDsNFiIqjKHlFkRqrgDthbJ5LQYFNSXbqLYOPMVinD8MHJvQaQY_a-qytR2191h6CD6fgwcTSNC6YtqzjT1pJyaXIfrFd7Hz4W04ZSI1UAudiwBYnrG6dD3vz6UNT6c70jQ_navbPR19U53Vm</recordid><startdate>19860501</startdate><enddate>19860501</enddate><creator>Crosier, Ronald B.</creator><general>Taylor &amp; Francis Group</general><general>The American Society for Quality Control and The American Statistical Association</general><general>American Society for Quality Control</general><general>American Statistical Association</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19860501</creationdate><title>The Geometry of Constrained Mixture Experiments</title><author>Crosier, Ronald B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c284t-fb791babee798fb65129e6c758b332074051255d415c4d212ae804f5ae9975203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1986</creationdate><topic>Applications</topic><topic>Centroids</topic><topic>Exact sciences and technology</topic><topic>Experiment design</topic><topic>Gasoline</topic><topic>H I regions</topic><topic>Hyperplanes</topic><topic>Mathematics</topic><topic>Polyhedrons</topic><topic>Probability and statistics</topic><topic>Pseudocomponents</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><topic>Vertices</topic><topic>Vertices algorithm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crosier, Ronald B.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Technometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crosier, Ronald B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Geometry of Constrained Mixture Experiments</atitle><jtitle>Technometrics</jtitle><date>1986-05-01</date><risdate>1986</risdate><volume>28</volume><issue>2</issue><spage>95</spage><epage>102</epage><pages>95-102</pages><issn>0040-1706</issn><eissn>1537-2723</eissn><coden>TCMTA2</coden><abstract>In mixture experiments, the proportions of the components are often constrained by upper and lower bounds. The resulting experimental region is usually an irregular polyhedron. The experimental region, however, can be obtained from a regular simplex by truncation. This technique allows derivation of formulas for the number of boundaries, and the volume, of the experimental region. The formulas for the number of boundaries provide guidance for designing mixture experiments. The formula for volume may be used to determine if small changes in the constraints have a small effect on the experimental region. The volume formula is also used, along with the truncation procedure, to calculate center-of-mass centroids. A new algorithm is given for generation of the vertices of mixture regions constrained by upper and lower bounds.</abstract><cop>Alexandria, VI</cop><cop>Milwaukee, WI</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/00401706.1986.10488110</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0040-1706
ispartof Technometrics, 1986-05, Vol.28 (2), p.95-102
issn 0040-1706
1537-2723
language eng
recordid cdi_pascalfrancis_primary_8774756
source JSTOR
subjects Applications
Centroids
Exact sciences and technology
Experiment design
Gasoline
H I regions
Hyperplanes
Mathematics
Polyhedrons
Probability and statistics
Pseudocomponents
Sciences and techniques of general use
Statistics
Vertices
Vertices algorithm
title The Geometry of Constrained Mixture Experiments
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T23%3A08%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Geometry%20of%20Constrained%20Mixture%20Experiments&rft.jtitle=Technometrics&rft.au=Crosier,%20Ronald%20B.&rft.date=1986-05-01&rft.volume=28&rft.issue=2&rft.spage=95&rft.epage=102&rft.pages=95-102&rft.issn=0040-1706&rft.eissn=1537-2723&rft.coden=TCMTA2&rft_id=info:doi/10.1080/00401706.1986.10488110&rft_dat=%3Cjstor_pasca%3E1270445%3C/jstor_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c284t-fb791babee798fb65129e6c758b332074051255d415c4d212ae804f5ae9975203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=1270445&rfr_iscdi=true