Loading…

Improving PET-based physiological quantification through methods of wavelet denoising

The goal of this study was to evaluate methods of multidimensional wavelet denoising on restoring the fidelity of biological signals hidden within dynamic positron emission tomography (PET) images. A reduction of noise within pixels, between adjacent regions, and time-serial frames was achieved via...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on biomedical engineering 2001-02, Vol.48 (2), p.202-212
Main Authors: Jou-Wei Lin, Laine, A.F., Bergmann, S.R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c486t-f4d31b0ea167185a75fc45bd7eaa487db0eb977bcaba1faad330519a3ffb16773
cites cdi_FETCH-LOGICAL-c486t-f4d31b0ea167185a75fc45bd7eaa487db0eb977bcaba1faad330519a3ffb16773
container_end_page 212
container_issue 2
container_start_page 202
container_title IEEE transactions on biomedical engineering
container_volume 48
creator Jou-Wei Lin
Laine, A.F.
Bergmann, S.R.
description The goal of this study was to evaluate methods of multidimensional wavelet denoising on restoring the fidelity of biological signals hidden within dynamic positron emission tomography (PET) images. A reduction of noise within pixels, between adjacent regions, and time-serial frames was achieved via redundant multiscale representations. In analyzing dynamic PET data of healthy volunteers, a multiscale method improved the estimate-to-error ratio of flows fivefold without loss of detail. This technique also maintained accuracy of flow estimates in comparison with the "gold standard," using dynamic PET with O15-water. In addition, in studies of coronary disease patients, flow patterns were preserved and infarcted regions were well differentiated from normal regions. The results show that a wavelet-based noise-suppression method produced reliable approximations of salient underlying signals and led to an accurate quantification of myocardial perfusion. The described protocol can be generalized to other temporal biomedical imaging modalities including functional magnetic resonance imaging and ultrasound.
doi_str_mv 10.1109/10.909641
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_902411</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>909641</ieee_id><sourcerecordid>2433232541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-f4d31b0ea167185a75fc45bd7eaa487db0eb977bcaba1faad330519a3ffb16773</originalsourceid><addsrcrecordid>eNqFkcFP2zAUxi20CUrHYdcdpohJGxwy_GInto8T6rZKldihPUcvid0aJXGJkyL-exxaDcQBTp-t9_Pn995HyGegPwGougqqqMo4HJEJpKmMk5TBBzKhFGSsEsVPyKn3t-HKJc-OyQlAojIpsglZzZtt53a2XUf_Zsu4QK-raLt58NbVbm1LrKO7AdvemnDurWujftO5Yb2JGt1vXOUjZ6J73Ola91GlW2d98PpEPhqsvT476JSsfs-W13_jxc2f-fWvRVxymfWx4RWDgmqETIBMUaSm5GlRCY3IpahCqVBCFCUWCAaxYoymoJAZU4Qngk3Jj71vmOFu0L7PG-tLXdfYajf4XEoJVGZCBfL7m6QQlAuVwbtgIplQkIzgxZvgOFPCRFh1QM9fobdu6NqwmdAhl4nkbOzwcg-VnfO-0ybfdrbB7iEHmo8xj7qPObBfD4ZD0ejqmTzkGoBvBwB9yNB02JbW_-cUTTiMNl_2lNVavyg-_fEINfe2kw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884828439</pqid></control><display><type>article</type><title>Improving PET-based physiological quantification through methods of wavelet denoising</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Jou-Wei Lin ; Laine, A.F. ; Bergmann, S.R.</creator><creatorcontrib>Jou-Wei Lin ; Laine, A.F. ; Bergmann, S.R.</creatorcontrib><description>The goal of this study was to evaluate methods of multidimensional wavelet denoising on restoring the fidelity of biological signals hidden within dynamic positron emission tomography (PET) images. A reduction of noise within pixels, between adjacent regions, and time-serial frames was achieved via redundant multiscale representations. In analyzing dynamic PET data of healthy volunteers, a multiscale method improved the estimate-to-error ratio of flows fivefold without loss of detail. This technique also maintained accuracy of flow estimates in comparison with the "gold standard," using dynamic PET with O15-water. In addition, in studies of coronary disease patients, flow patterns were preserved and infarcted regions were well differentiated from normal regions. The results show that a wavelet-based noise-suppression method produced reliable approximations of salient underlying signals and led to an accurate quantification of myocardial perfusion. The described protocol can be generalized to other temporal biomedical imaging modalities including functional magnetic resonance imaging and ultrasound.</description><identifier>ISSN: 0018-9294</identifier><identifier>EISSN: 1558-2531</identifier><identifier>DOI: 10.1109/10.909641</identifier><identifier>PMID: 11296876</identifier><identifier>CODEN: IEBEAX</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Adult ; Algorithms ; Biological and medical sciences ; Cardiovascular system ; Coronary Disease - diagnostic imaging ; Data analysis ; Diseases ; Dynamic tests ; Dynamics ; Female ; Gold ; Heart - diagnostic imaging ; Humans ; Image Enhancement - methods ; Image restoration ; Imaging ; Investigative techniques, diagnostic techniques (general aspects) ; Magnetic noise ; Maintenance ; Male ; Medical imaging ; Medical research ; Medical sciences ; Middle Aged ; Models, Cardiovascular ; Multidimensional systems ; Multiscale methods ; Myocardial Infarction - diagnostic imaging ; NMR ; Noise reduction ; Nuclear magnetic resonance ; Patients ; Positron emission tomography ; Radionuclide investigations ; Reduction ; Signal restoration ; Tomography, Emission-Computed ; Wavelet</subject><ispartof>IEEE transactions on biomedical engineering, 2001-02, Vol.48 (2), p.202-212</ispartof><rights>2001 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2001</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-f4d31b0ea167185a75fc45bd7eaa487db0eb977bcaba1faad330519a3ffb16773</citedby><cites>FETCH-LOGICAL-c486t-f4d31b0ea167185a75fc45bd7eaa487db0eb977bcaba1faad330519a3ffb16773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/909641$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=902411$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11296876$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jou-Wei Lin</creatorcontrib><creatorcontrib>Laine, A.F.</creatorcontrib><creatorcontrib>Bergmann, S.R.</creatorcontrib><title>Improving PET-based physiological quantification through methods of wavelet denoising</title><title>IEEE transactions on biomedical engineering</title><addtitle>TBME</addtitle><addtitle>IEEE Trans Biomed Eng</addtitle><description>The goal of this study was to evaluate methods of multidimensional wavelet denoising on restoring the fidelity of biological signals hidden within dynamic positron emission tomography (PET) images. A reduction of noise within pixels, between adjacent regions, and time-serial frames was achieved via redundant multiscale representations. In analyzing dynamic PET data of healthy volunteers, a multiscale method improved the estimate-to-error ratio of flows fivefold without loss of detail. This technique also maintained accuracy of flow estimates in comparison with the "gold standard," using dynamic PET with O15-water. In addition, in studies of coronary disease patients, flow patterns were preserved and infarcted regions were well differentiated from normal regions. The results show that a wavelet-based noise-suppression method produced reliable approximations of salient underlying signals and led to an accurate quantification of myocardial perfusion. The described protocol can be generalized to other temporal biomedical imaging modalities including functional magnetic resonance imaging and ultrasound.</description><subject>Adult</subject><subject>Algorithms</subject><subject>Biological and medical sciences</subject><subject>Cardiovascular system</subject><subject>Coronary Disease - diagnostic imaging</subject><subject>Data analysis</subject><subject>Diseases</subject><subject>Dynamic tests</subject><subject>Dynamics</subject><subject>Female</subject><subject>Gold</subject><subject>Heart - diagnostic imaging</subject><subject>Humans</subject><subject>Image Enhancement - methods</subject><subject>Image restoration</subject><subject>Imaging</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Magnetic noise</subject><subject>Maintenance</subject><subject>Male</subject><subject>Medical imaging</subject><subject>Medical research</subject><subject>Medical sciences</subject><subject>Middle Aged</subject><subject>Models, Cardiovascular</subject><subject>Multidimensional systems</subject><subject>Multiscale methods</subject><subject>Myocardial Infarction - diagnostic imaging</subject><subject>NMR</subject><subject>Noise reduction</subject><subject>Nuclear magnetic resonance</subject><subject>Patients</subject><subject>Positron emission tomography</subject><subject>Radionuclide investigations</subject><subject>Reduction</subject><subject>Signal restoration</subject><subject>Tomography, Emission-Computed</subject><subject>Wavelet</subject><issn>0018-9294</issn><issn>1558-2531</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqFkcFP2zAUxi20CUrHYdcdpohJGxwy_GInto8T6rZKldihPUcvid0aJXGJkyL-exxaDcQBTp-t9_Pn995HyGegPwGougqqqMo4HJEJpKmMk5TBBzKhFGSsEsVPyKn3t-HKJc-OyQlAojIpsglZzZtt53a2XUf_Zsu4QK-raLt58NbVbm1LrKO7AdvemnDurWujftO5Yb2JGt1vXOUjZ6J73Ola91GlW2d98PpEPhqsvT476JSsfs-W13_jxc2f-fWvRVxymfWx4RWDgmqETIBMUaSm5GlRCY3IpahCqVBCFCUWCAaxYoymoJAZU4Qngk3Jj71vmOFu0L7PG-tLXdfYajf4XEoJVGZCBfL7m6QQlAuVwbtgIplQkIzgxZvgOFPCRFh1QM9fobdu6NqwmdAhl4nkbOzwcg-VnfO-0ybfdrbB7iEHmo8xj7qPObBfD4ZD0ejqmTzkGoBvBwB9yNB02JbW_-cUTTiMNl_2lNVavyg-_fEINfe2kw</recordid><startdate>20010201</startdate><enddate>20010201</enddate><creator>Jou-Wei Lin</creator><creator>Laine, A.F.</creator><creator>Bergmann, S.R.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20010201</creationdate><title>Improving PET-based physiological quantification through methods of wavelet denoising</title><author>Jou-Wei Lin ; Laine, A.F. ; Bergmann, S.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-f4d31b0ea167185a75fc45bd7eaa487db0eb977bcaba1faad330519a3ffb16773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Adult</topic><topic>Algorithms</topic><topic>Biological and medical sciences</topic><topic>Cardiovascular system</topic><topic>Coronary Disease - diagnostic imaging</topic><topic>Data analysis</topic><topic>Diseases</topic><topic>Dynamic tests</topic><topic>Dynamics</topic><topic>Female</topic><topic>Gold</topic><topic>Heart - diagnostic imaging</topic><topic>Humans</topic><topic>Image Enhancement - methods</topic><topic>Image restoration</topic><topic>Imaging</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Magnetic noise</topic><topic>Maintenance</topic><topic>Male</topic><topic>Medical imaging</topic><topic>Medical research</topic><topic>Medical sciences</topic><topic>Middle Aged</topic><topic>Models, Cardiovascular</topic><topic>Multidimensional systems</topic><topic>Multiscale methods</topic><topic>Myocardial Infarction - diagnostic imaging</topic><topic>NMR</topic><topic>Noise reduction</topic><topic>Nuclear magnetic resonance</topic><topic>Patients</topic><topic>Positron emission tomography</topic><topic>Radionuclide investigations</topic><topic>Reduction</topic><topic>Signal restoration</topic><topic>Tomography, Emission-Computed</topic><topic>Wavelet</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jou-Wei Lin</creatorcontrib><creatorcontrib>Laine, A.F.</creatorcontrib><creatorcontrib>Bergmann, S.R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jou-Wei Lin</au><au>Laine, A.F.</au><au>Bergmann, S.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving PET-based physiological quantification through methods of wavelet denoising</atitle><jtitle>IEEE transactions on biomedical engineering</jtitle><stitle>TBME</stitle><addtitle>IEEE Trans Biomed Eng</addtitle><date>2001-02-01</date><risdate>2001</risdate><volume>48</volume><issue>2</issue><spage>202</spage><epage>212</epage><pages>202-212</pages><issn>0018-9294</issn><eissn>1558-2531</eissn><coden>IEBEAX</coden><abstract>The goal of this study was to evaluate methods of multidimensional wavelet denoising on restoring the fidelity of biological signals hidden within dynamic positron emission tomography (PET) images. A reduction of noise within pixels, between adjacent regions, and time-serial frames was achieved via redundant multiscale representations. In analyzing dynamic PET data of healthy volunteers, a multiscale method improved the estimate-to-error ratio of flows fivefold without loss of detail. This technique also maintained accuracy of flow estimates in comparison with the "gold standard," using dynamic PET with O15-water. In addition, in studies of coronary disease patients, flow patterns were preserved and infarcted regions were well differentiated from normal regions. The results show that a wavelet-based noise-suppression method produced reliable approximations of salient underlying signals and led to an accurate quantification of myocardial perfusion. The described protocol can be generalized to other temporal biomedical imaging modalities including functional magnetic resonance imaging and ultrasound.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>11296876</pmid><doi>10.1109/10.909641</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0018-9294
ispartof IEEE transactions on biomedical engineering, 2001-02, Vol.48 (2), p.202-212
issn 0018-9294
1558-2531
language eng
recordid cdi_pascalfrancis_primary_902411
source IEEE Electronic Library (IEL) Journals
subjects Adult
Algorithms
Biological and medical sciences
Cardiovascular system
Coronary Disease - diagnostic imaging
Data analysis
Diseases
Dynamic tests
Dynamics
Female
Gold
Heart - diagnostic imaging
Humans
Image Enhancement - methods
Image restoration
Imaging
Investigative techniques, diagnostic techniques (general aspects)
Magnetic noise
Maintenance
Male
Medical imaging
Medical research
Medical sciences
Middle Aged
Models, Cardiovascular
Multidimensional systems
Multiscale methods
Myocardial Infarction - diagnostic imaging
NMR
Noise reduction
Nuclear magnetic resonance
Patients
Positron emission tomography
Radionuclide investigations
Reduction
Signal restoration
Tomography, Emission-Computed
Wavelet
title Improving PET-based physiological quantification through methods of wavelet denoising
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A16%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20PET-based%20physiological%20quantification%20through%20methods%20of%20wavelet%20denoising&rft.jtitle=IEEE%20transactions%20on%20biomedical%20engineering&rft.au=Jou-Wei%20Lin&rft.date=2001-02-01&rft.volume=48&rft.issue=2&rft.spage=202&rft.epage=212&rft.pages=202-212&rft.issn=0018-9294&rft.eissn=1558-2531&rft.coden=IEBEAX&rft_id=info:doi/10.1109/10.909641&rft_dat=%3Cproquest_pasca%3E2433232541%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c486t-f4d31b0ea167185a75fc45bd7eaa487db0eb977bcaba1faad330519a3ffb16773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=884828439&rft_id=info:pmid/11296876&rft_ieee_id=909641&rfr_iscdi=true